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A B S T R A C T

This paper investigates the environmental impact of urban road freight in the Paris region, fo-
cusing on pollutant emissions. We develop a modeling chain including a freight demand model, a
multiclass traffic assignment model, and a road emission model. This allows for a detailed re-
presentation - spatially and with regard to operations - of urban road freight. We find that while
urban road freight represents only 6% of trips and 8% of distances traveled by road in the Paris
region, it accounts for 36% of total damages caused by pollutant emissions from road traffic. This
is the combined result of light and heavy goods vehicles emitting more than private cars, and of
freight traffic being more spatially concentrated (within the city center) than passenger traffic,
thereby affecting more population. All in all, the environmental cost of urban road freight is
around 2.1 billion € per year. Some policy implications are discussed.

1. Introduction

Urban freight today faces a paradox. On the one hand, picking-up and delivering the right volume of goods to the right place at
the right time has become increasingly crucial to the functioning of cities (OECD, 2003; Dablanc, 2009; Macharis and Melo, 2011).
On the other hand, economic and technological constraints (Cullinane and Toy, 2000; Holguin-Veras, 2002; Comi et al., 2012) lead
freight operators to resort massively to road transport. Urban road freight (URF) is therefore accused of contributing substantially to
environmental nuisances in cities, and more generally to degrading urban livability through its impact on congestion, traffic safety, or
the use of public space (OECD, 2003; Cui et al., 2015; CIVITAS, 2015), leading public authorities to enforce policies aimed at making
URF more sustainable (e.g. road pricing, low emission zones, incentive mechanisms to promote off-hour deliveries or the use of
electric vehicles; Holguin-Veras et al., 2006; Mirhedayatian and Yan, 2018; Demir et al., 2014; Cui et al., 2015; Russo and Comi,
2016; Ellison et al., 2013).

While data collection efforts have been engaged over the last decade (Toilier et al., 2016; Allen et al., 2010; Holguin-Veras and
Jaller, 2014), a fine knowledge of urban road freight is still lacking to corroborate the claims regarding its alleged environmental
impact. As opposed to private car (PC) trips - for which information from households travel surveys (and increasingly from big data
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sources) is available -, authorities are rarely aware of distances traveled by LGVs and HGVs (Light/Heavy Goods Vehicles) and urban
freight origins and destinations within their jurisdictions (EC, 2013; CIVITAS, 2015). First, the commercial nature of URF implies
information privacy in most countries. Second, traffic sensors usually cover but a small share of the road network and cannot
distinguish LGVs from PCs. Last, organizational features of URF (e.g. direct or round trips) make its observation complex. Assessing
precisely the environmental impact of URF consequently remains a major challenge to date, be it for public stakeholders or the
academic community.

This paper aims to bridge the gap between common beliefs about the environmental impact of urban road freight and its empirical
measurement, focusing on pollutant emissions.1

We develop a modeling chain that enables us to estimate travel demand for URF and the resulting emissions for up to 30
pollutants. This includes greenhouse gas emissions, firstly carbon dioxide (CO2), which by contributing to global warming lead to
several adverse economic effects (Tol, 2009), as well as local pollutants such as nitrogen oxide (NOx) or fine particulate matter
(PM10), which may endanger the health of exposed populations (Kampa and Castanas, 2008; WHO, 2016). Using this modeling chain,
we estimate the environmental social cost of URF for a major metropolitan area.2 Accounting for 18% of the French population and
30% of the national GDP in 2012, the Paris region is one of the wealthiest areas in Europe, but also one of the most heavily congested
(Inrix, 2014). Concerns related to air pollution are nowadays of major interest to elected officials (IdF, 2016) and to the population
(EC, 2016). As a consequence, it seems relevant to specify the magnitude of environmental social losses caused by urban road freight.

This paper extends the vast body of literature on the environmental impact of road traffic (see the survey by Shorshani et al.
(2015), or specific case studies by Xia and Shao, 2005; Tirumalachetty et al., 2013) by specifying the contribution of URF. This is
especially relevant inasmuch as freight transport and passenger transport are typically subject to distinct transport policies con-
sidering economic, technological and organizational differences between the two. From a methodological point of view, our modeling
chain represents URF with a great level of detail regarding operations as well as the spatial resolution. While freight trip generation is
now well addressed, from delivery models to commodity flow based models (Boerkamps and van Bisbergen, 1999; Munuzuri et al.,
2009; Nuzzolo et al., 2012), trip distribution has seldom been addressed as, unlike for passenger travel, it cannot be treated using
gravity models: one product can travel through several warehouses, in various vehicles and packaging types (Ogden, 1992). An
original method such as provided by the Freturb model (Routhier and Toilier, 2007) is therefore needed. The proposed modeling
chain allows to estimate freight travel demand for an entire metropolitan area (and not for a single economic site as in Aditjandra
et al., 2016), while taking into account the main specificities of URF, such as the distinction between direct and round trips or
between own-account and third party operations (unlike Kanarogou and Buliung, 2008). In contrast to previous environmental
economics studies carried out at a national scale (e.g. Muller and Mendelsohn, 2007), the fine spatial resolution at the municipality
level allows accounting for the greater damages of air pollution in dense areas where more population is exposed, as established by
the “Impact Pathway Approach” developed in the frame of the European ExternE research project (Friedrich and Bickel, 2001). This
proves especially important in the case of urban road freight, as we find it to be more spatially concentrated than passenger private
transport, combined with the fact that density levels strongly vary within the Paris metropolitan area.

The rest of this paper proceeds as follows. Section 2 describes the methodology, and Section 3 the data. Section 4 presents the
main results which are discussed in Section 5. Section 6 concludes.

2. Methods

The methodology involves two main steps (Fig. 1)3: estimating first pollutant emissions, then the environmental social cost of
road traffic. Four classes of vehicles are distinguished throughout computations - PCs, LGVs, and HGVs (rigid and articulated)4 -,
allowing us to isolate at each step the contribution of URF.

We start by estimating travel demand related to URF. Based on the characteristics (industry sector, size, premises, etc.) and the
spatial distribution of firms within the Paris region, the Freturb-Simetab models (Routhier and Toilier, 2007; Gardrat et al., 2014)
estimate generation coefficients (number of weekly deliveries and pick-ups) for all firms, then the resulting travel demand. The
corresponding outputs are Origin-Destination (OD) matrices, disaggregated according to the three freight vehicle classes (LGVs and
rigid/articulated HGVs). Next, combining the OD matrices for URF and PCs,5 with transport costs parameters and the road network
characteristics, we compute the multi-class traffic equilibrium (Dafermos, 1972) using the TransCAD software. Reflecting strategic
interactions among drivers during route choice, it is essentially similar to a Nash equilibrium (Correa and Stier-Moses, 2011). This
gives us for each road link the traffic flow, its composition by vehicle class, and the average vehicle speed. These data are finally fed
to the Copcete model (Demeules and Larose, 2012). Taking into account the vehicle type, the traffic speed, the technological
composition of the vehicle fleet, and so on, Copcete provides estimates of pollutants emitted by each vehicle class, again at the road

1 French official guidelines (CGSP, 2013) suggest that in the case of road traffic, losses linked to climate change and air pollution largely prevail over other
environmental nuisances (e.g. noise). Accordingly, the latter are not considered in this paper; neither are social losses linked to traffic safety or to the use of public
space.
2 In this paper, we use the term “environmental social cost” to refer to the specific part of the social cost (of road traffic) related to pollutant emissions (CO2, NOx and

PM2.5).
3 The detailed methodology is described in Appendix A.
4 The distinction between LGVs and HGVs is based on the UE definition, i.e. whether the gross combination mass is below or over 3.5 t.
5 Considering the focus of our paper, the passenger travel demand model used to generate the OD matrices for private cars is not presented; rather, we treat the OD

matrix for PCs as an exogenous input. See Section 3.2 for more details.
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link level. This enables us to propose a simplified indicator of individuals’ exposure to pollutants emissions from road traffic, at the
municipality level.

In the second step, we cross the outputs from the first step with spatialized socioeconomic data and external costs (shadow prices)
of pollutants provided by French national guidelines (CGSP, 2013; Ducos, 2014) in order to assess the environmental social cost of
URF.6 Because road users rarely pay specific taxes aimed at covering the various damages from pollutants emissions (Santos, 2017),
these are often referred to as the external costs of transport, thus implying a dead-weight loss for the collectivity. The fine spatial
resolution of our estimates allows us to account for the greater impact of local pollution in dense areas as a result of more people
being exposed. This point proves especially important in the case of URF, as we will see in Section 4.

3. Data

3.1. Overview of the study area

The Île-de-France (IdF) region7 was composed of 1300 municipalities in 2012, spanning over 12,058 km2. The region is mostly
monocentric, population density declining quickly with distance to Paris (Fig. 2).8

Whereas the city of Paris had 2.2 million inhabitants in 2012 with a population density reaching 23,700 inh./km2, these figures
fall to 77,000 inhabitants and 28 inh./km2 respectively in interurban areas (Table 1). The spatial pattern is more pronounced for
economic activities. The city of Paris concentrates 39% and 32% of regional establishments and jobs, respectively, over only 1% of
the regional area, thereby highlighting the strength of “agglomeration economies”. Establishments located in Paris are smaller (6.3
jobs per firm on average) than those in the inner suburbs (with 7.8 jobs per firm). Firms in the core of the metro area are mostly
specialized in services and high-skilled jobs, whereas (labor intensive) industries or wholesale activities need more space and prefer

Note: exogenous input data are identified by stars; modeling tools are underlined; estimated outputs are framed.
Source: authors’ elaboration.

Fig. 1. Methodological framework, Note: exogenous input data are identified by stars; modeling tools are underlined; estimated outputs are framed.
Source: authors’ elaboration.

6 More specifically, for CO2 we use the carbon price recommended by the national guidelines (CGSP, 2013). In the case of air pollution, rather than the marginal
external costs in €/vkm provided in the main report, we use the raw marginal external costs in €/t reported in the annex (Ducos, 2014). Indeed, the marginal external
costs from the main report (in €/vkm) were derived by multiplying the raw marginal external costs (in €/t) by average emission factors (in t/vkm). Because we
estimate emissions using Copcete, using the raw external costs in combination with our own emission estimates is bound to yield more precise results than using the
rough marginal external costs in €/vkm, hence our choice. The raw marginal external costs from Ducos (2014) were estimated by following best practices set up by the
Impact Pathway Approach, while accounting for national specificities regarding the statistical value of life and population density profiles.
7 The administrative Paris region, called Île-de-France, slightly differs from the statistical metropolitan area of Paris, but is a good proxy for it, and one for which

general data is more easily available.
8 As represented in Fig. 2, IdF is divided according to the spatial classification found in the Quinet report (CGSP, 2013) and used to compute the social cost of air

pollution in Section 4. Considering its importance and its specificity, the city of Paris is added as a distinct sub-category within the very dense urban area.
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peripheral locations, with lower rental prices.

3.2. OD matrices

The SIRENE dataset provides information at the municipality level for IdF and for year 2012 regarding the number of estab-
lishments, their industrial classification and their size. After imputing the nature of the premises using the Simetab model (see
Appendix A), the augmented dataset is fed to Freturb to estimate goods movements in IdF.

Each establishment emits and/or receives an average of 6.3 freight operations per week (Table 2), for a total of 5.08 million
operations per week.9 Establishments in Paris city generate the fewest operations (4.9/week), due to the smaller size of firms and to
their economic specialization (services emitting and receiving few goods). Around 30% of freight movements are direct trips, with a
higher share in interurban areas (50%) where consolidation is less feasible. Third party transport companies operate around 40% of
goods movements. Own account transport is more represented in interurban areas (70%), as small firms (B2C services, small retail)
are more likely to make their deliveries and/or collections themselves (Toilier et al., 2016). These types of activity also tend to make

Fig. 2. The Île-de-France region, Source: authors’ elaboration from CGSP (2013) and 2012 Census (Insee).

Table 1
Socioeconomic data (2012).
Sources: IGN, Census (Insee), SIRENE (Insee), Freturb.

IdF Paris VDUA DUA UA DIUA IA

Municipalities 1300 20 110 141 161 660 208
Area (km2) 12,058 105 556 968 1293 6432 2703
Mean distance to Paris (km) 41.1 0 11.4 22.1 31.7 46.6 62.3
Population (1000) 11,899 2241 4623 2831 1175 950 77
Pop. density (inh./km2) 1709 23,656 9646 3009 940 160 28
Establishments (1000) 806.4 318.0 245.9 126.7 58.5 52.0 5.3
Jobs (1000) 5949.2 1900.2 2074.6 1106.6 485.5 362.3 20.0
Job density (jobs/km2) 988 27,824 4326 1050 389 60 8
Estab. size (jobs/estab.) 5.4 6.3 7.8 7.8 7.2 4.9 2.4

Note: “VDUA” stands for very dense urban area, “DUA” for dense urban area, “UA” for urban area, “DIUA” for diffuse urban area and “IA” for
interurban area.

9 An operation, or movement, is either a delivery or a pick-up of a freight shipment.
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direct trips rather than rounds to collect freight (Gérardin et al., 2000).10

Using Freturb, we also estimate freight OD matrices (at the municipality level) for three vehicle classes – rigid or articulated
HGVs, LGVs – and three times of day: morning peak (7–9 am), evening peak (5–7 pm), and rest of the day.11 The OD matrix for PCs
comes from the MODUS regional transport model.12

URF accounts for 6.2% of road trips in the Paris region, generating around 893,000 trips per day, against 13.5 million daily trips
for PCs (Table 3). About 57% of freight trips are made with LGVs; 25% occur during peak periods. PC trips are more concentrated in
time, 33% being made in peak periods. Conversely, URF flows are more spatially concentrated than PC flows: 63% of URF flows are
related to Paris and/or very dense urban areas (as origin and/or destination), against only 51% for PC trips. The more scattered
spatial structure of PC trips may be partly explained by the density and performance of the public transit network within the city
center, combined with an insufficient parking supply in Paris. Accordingly, only 11% of PC trips are related to Paris, even though
Paris accounts for 18% of the regional population and 32% of regional employment. Similarly, the share of road trips between Paris
and the outer suburbs linked to URF is almost five times the regional average (30% against 6.2%, respectively).

3.3. Road network

The road network includes the most important roads in IdF (freeways, arterials, collectors), totaling 39,420 links for a length of

Table 2
Characteristics of freight operations (2012).
Sources: authors’ calculations from Freturb and Simetab.

IdF Paris VDUA DUA UA DIUA IA

Operations per establishment (/week) 6.3 4.9 6.6 7.5 8.8 7.1 5.1
Direct trips movements 29.8% 26.9% 28.4% 29.4% 30.1% 34.2% 50.7%
Third party operators movements 41.2% 40.2% 41.4% 41.7% 44.1% 39.7% 31.1%

Note: “VDUA” stands for very dense urban area, “DUA” for dense urban area, “UA” for urban area, “DIUA” for diffuse urban area and “IA” for
interurban area.

Table 3
OD matrices for urban road freight and private cars (2012).
Sources: authors’ calculations from Freturb for URF and from DRIEA for PC.

Daily trips to:

Paris VDUA DUA UA DIUA IA Total

Daily trips from: Paris 1,129,372
144,280
(11.7%)

495,943
74,516
(13.1%)

107,198
31,665
(22.8%)

28,178
15,990
(36.2%)

25,771
11,649
(31.1%)

1272
630
(33.1%)

1,787,737
278,732
(13.5%)

VDUA 559,999
74,516
(11.7%)

3,270,264
139,509
(4.1%)

747,846
47,617
(6.0%)

213,058
18,984
(8.2%)

109,242
8481
(7.2%)

5038
412
(7.6%)

4,905,450
289,521
(5.6%)

DUA 93,349
31,665
(25.3%)

770,811
47,617
(5.8%)

1,877,459
48,785
(2.5%)

463,366
24,457
(5.0%)

262,432
13,860
(5.0%)

14,975
620
(4.0%)

3,482,394
167,007
(4.6%)

UA 27,449
15,990
(36.8%)

208,650
18,984
(8.3%)

460,160
24,457
(5.0%)

682,293
17,397
(2.5%)

267,952
11,884
(4.2%)

23,106
860
(3.6%)

1,669,611
89,575
(5.1%)

DIUA 21,253
11,649
(35.4%)

114,038
8481
(6.9%)

286,320
13,860
(4.6%)

276,152
11,884
(4.1%)

759,846
15,884
(2.0%)

45,135
1669
(3.6%)

1,502,746
63,429
(4.1%)

IA 1288
630
(32.8%)

5799
412
(6.6%)

18,329
620
(3.3%)

26,290
860
(3.2%)

47,055
1669
(3.4%)

66,091
411
(0.6%)

164,855
4604
(2.7%)

Total 1,832,712
278,732
(13.2%)

4,865,507
289,521
(5.6%)

3,497,314
167,007
(4.6%)

1,689,340
89,575
(5.0%)

1,472,301
63,429
(4.1%)

155,619
4604
(2.9%)

13,512,795
892,872
(6.2%)

Notes: “VDUA” stands for very dense urban area, “DUA” for dense urban area, “UA” for urban area, “DIUA” for diffuse urban area and “IA” for
interurban area. The underlined figures refer to trips made by LGVs and HGVs; the percentages in brackets describe the share of URF on a given OD.

10 Specifically, two thirds of operations are done in direct trips when consignees pick up the goods themselves.
11 Flows of goods between IdF and other regions as well as transit flows are not considered in our study. Although leading to a downward bias in our results, this

should not alter our main conclusions seeing that we focus on URF.
12 Developed by the Direction Régionale et Interdépartementale de l’Equipement d’Ile-de-France, MODUS is focused on passenger transport and calibrated using a

regional trip survey and traffic counts.
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20,500 km (Table B.1 in Appendix B). It is strongly radial, yet with three concentric ring roads (Fig. 3). Road density declines with
distance to the urban center and free-flow speeds are higher in peripheral areas, with 63 km/h in diffuse areas against 44 km/h in
Paris (Table B.1). Road capacities are relatively stable over space, with a mean capacity around 1700 vehicles per hour.

3.4. Traffic assignment model

The parameters used to derive generalized costs - vehicle usage costs, vehicle occupancy, load weights for goods vehicles, and the
values of travel time savings - are reported in Table B.2 (Appendix B). Using these parameters and OD matrices for URF and PCs,

Fig. 3. Road network, Source: authors’ elaboration with TransCAD, from DRIEA.

Table 4
Results of the traffic assignment model.
Source: authors’ calculations from TransCAD.

IdF Paris VDUA DUA UA DIUA IA

Peak periods
PC (veh/h) 745 1146 858 664 646 526 404
LGV (veh/h) 33 95 40 23 17 10 3
HGV (veh/h) 28 69 33 22 18 11 3
VOC ratio 0.45 0.62 0.53 0.44 0.37 0.30 0.22
Vehicle speed (km/h) 41.2 20.7 31.8 40.6 49.4 61.4 70.3

Off-peak period
PC (veh/h) 303 477 350 272 257 209 146
LGV (veh/h) 20 59 25 14 10 6 2
HGV (veh/h) 17 42 20 13 11 6 2
VOC ratio 0.20 0.29 0.24 0.20 0.16 0.13 0.08
Vehicle speed (km/h) 51.3 33.0 44.3 50.8 58.0 67.5 74.5

Note: “VDUA” stands for very dense urban area, “DUA” for dense urban area, “UA” for urban area, “DIUA” for diffuse urban area and “IA” for
interurban area.
VOC=Volume-Over-Capacity.
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TransCAD computes the multiclass traffic equilibrium, and the corresponding traffic flows and vehicle speeds at the road link level.
The average PC flow on a given road link is 745 veh/h during peaks and 303 veh/h during the off-peak period (Table 4). The flows

are respectively 61 veh/h (33 LGVs/h plus 28 HGVs/h) and 37 veh/h (20 LGVs/h plus 17 HGVs/h) in the case of URF. As a con-
sequence, the mean volume-over-capacity ratio is 0.45 during peak periods (0.20 the rest of the day), hence a mean travel speed of
41.2 km/h (51.3 km/h). Paris roads are the most heavily used (1310 veh/h during peak hours), thus presenting the lowest speeds
(20.7 km/h). Regarding URF, LGVs are more intensively used than HGVs in the central areas of IdF.

We now look into distances traveled as a key driver of the environmental social cost of URF. We find that every working day,
around 155million vkm are traveled in IdF, 33% of which during rush hour periods (Table 5).13 Paris concentrates 11% of road traffic
whereas fringes of the metropolitan area account for 30% of traveled distances. Urban road freight represents around 8% of distances
traveled. This share strongly varies over space, however. LGVs and HGVs are responsible for 16% of distances traveled in Paris,
against only 2.6% in interurban areas. This marked difference stems from higher jobs per capita ratios in the densest parts of the
metro area, hence the relatively greater intensity of URF in comparison to PCs.14

3.5. Pollutants and vehicle fleet

Copcete allows estimating exhaust emissions for up to thirty pollutants. For concision, we focus our analysis on CO2, PM10 and
NOx, as three major emissions from road traffic accounting for 29%, 25% and 55% of regional emissions, respectively (Airparif,
2013). The vehicle fleet composition according to the four vehicle classes and the various European emission standards is extracted
from a French yearly survey (Enquête Parc Auto – IFSTTAR)15 and is based on distances traveled rather than on number of vehicles.
Diesel vehicles make up the large majority of those, especially for freight vehicles (Table 6). This can be explained by the national tax
system that favored, until recently, diesel fuels. Whatever the type considered, Euro-II or older vehicles account for no more than
12.5% of the fleet in 2012, and only 8.7% for HGVs. Regarding freight vehicles, Euro-IV or V technologies are the most represented.

4. Results

4.1. Pollutant emissions

Every day, road traffic emits 31,271 tons of CO2, 123 tons of NOx and 15 tons of PM10 in IdF (Table 7). Emissions are highly
concentrated, in time and in space. One third is emitted during peak periods (i.e. over one sixth of the day). Similarly, very dense
urban areas (including Paris) concentrate for each pollutant around 40% of emissions, for only 5% of the total regional area. Yet,
considering that said areas account for 58% of the regional population and 67% of jobs, this figure of 40% is lower than expected.
This results from two opposite forces. Car use is lower in the center of the metro area (see Section 3.2), but unit emission rates are
greater because of lower traffic speeds (Ntziachristos and Samaras, 2000; Grote et al., 2016).16 To confirm the latter point, we reckon
a spatial indicator of emission intensity by dividing - for a given pollutant - the share of regional emissions received by a given zone

Table 5
Distances traveled.
Sources: authors’ calculations from TransCAD.

IdF Paris VDUA DUA UA DIUA IA

VKT (M vkm/day) 154.5 16.5 37.0 30.9 23.8 38.8 7.6
PC 142.4 13.9 33.3 28.4 22.3 37.1 7.4
LGV 6.4 1.5 2.0 1.3 0.7 0.8 0.1
HGV 5.7 1.1 1.7 1.2 0.8 0.9 0.1

VKT (%) 100% 10.7% 23.9% 20.0% 15.4% 25.1% 4.9%
Share during peaks (%) 33.0% 31.5% 32.7% 32.7% 33.2% 33.5% 34.2%
Share of URF (%) 7.8% 15.8% 10.0% 8.1% 6.3% 4.4% 2.6%

Note: “VDUA” stands for very dense urban area, “DUA” for dense urban area, “UA” for urban area, “DIUA” for diffuse urban area and “IA” for
interurban area.

13 Checking the consistency of our traffic estimates is not an easy task, especially for URF considering the (very) limited data available. For PCs, according to the last
2010 regional household travel survey the volume of daily trips added up to 15.4M for IdF, with an approximate network distance of 8.7 km. This leads to an estimated
total of 134Mvkm driven by PCs, close to our own estimate (142Mvkm). Regarding URF, to the best of our knowledge the only information available comes from
Beziat et al. (2017) who use a recent - though very small - urban goods survey carried out in 2011 in IdF. Based on their estimates, we infer a daily total of 11.6 Mvkm
for URF, once again in line with our own estimate (12.1Mvkm). Their results lead to slightly different ratios of LGVs vs. HGVs, however, with 43% of LGVs against
53% in our case. This difference might partly be related to the fact that we use an assignment model to compute distances traveled, which is not the case in Beziat et al.
(2017).
14 The traffic assignment model can also be used to convert the total time spent on roads (3.16 million hours per day) into monetary equivalents. By adding these

resources to the vehicle usage costs, we find total generalized costs of road transport equal to 90 million euros per day (Table B.3). URF operators support 12.9% of the
total bill, due to higher kilometric costs of LGVs and HGVs and to the larger share of vkm driven in dense areas, at lower traffic speeds.
15 Considering the lack of information specific to IdF, we use the national composition instead. See the discussion in Section 5.2.
16 Emission factor curves are often U-shaped, and for the range of speeds considered one is generally on the left side of the U, so that a decrease in traffic speed leads

to an increase in emission rates (per vkm). See Appendix A and Fig. A.1.
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with the corresponding share of regional road traffic. This indicator – equal to 1 for all zones if emission rates per vehicle-kilometer
were constant over space – is greater than 1 in Paris, but then decreases as population density decreases (Table C.1). This confirms
that dense urban areas with lower traffic speeds do “over-emit”. Nevertheless, the efficiency of public transport and active modes in
dense areas strongly curbing road traffic, this “lower traffic share” effect prevails over the “over-emission” effect to produce the above
result.

Focusing on URF, commercial vehicles account for 20% of CO2 and 30% of NOX and PM10 emitted by road traffic in IdF, though
representing only 8% of distances traveled. Emission intensity is much greater in the case of freight traffic indeed, especially re-
garding NOx and PM10 (Table C.1). More specifically, we find that HGVs pollute two to five times more than LGVs depending on the
pollutant considered, while accounting for only 47% of distances traveled by freight vehicles. Yet, computations show that reasoning
in ton-kilometers instead of vehicle-kilometers leads to the opposite statement: HGVs actually pollute (slightly) less than LGVs per
tkm.17

From a spatial perspective, the share of emissions caused by URF is highly heterogeneous. It varies from around 50% for NOx and
PM10 in Paris to only 10% in the fringes of IdF (Table 7). Interestingly, the indicator of emission intensity behaves very differently for

Table 6
Vehicle fleet distribution (2012, in % of distances traveled).
Sources: Copcete and “Enquête Parc Auto – IFSTTAR”.

PC LGV HGV

Petrol Diesel Others Petrol Diesel Diesel

Euro-0 1.9% 1.3% – 0.2% 2.1% 0.2%
Euro-I 2.6% 3.1% – 0.1% 3.6% 0.6%
Euro-II 5.4% 6.3% – 0.2% 7.0% 7.9%
Euro-III 4.4% 19.9% – 0.2% 23.5% 23.6%
Euro-IV 7.7% 28.1% – 0.2% 38.7% 33.6%
Euro-V 3.7% 15.1% – 0.1% 24.1% 34.1%
Total 25.7% 73.8% 0.5% 1.0% 99.0% 100%

Table 7
Pollutant emissions.
Source: authors’ calculations from Copcete.

IdF Paris VDUA DUA UA DIUA IA

CO2

Emissions (tons/day) 31,271 4256 7970 6219 4485 7014 1327
PC 25,205 2813 6122 5018 3771 6241 1239
LGV 1688 421 509 324 190 219 25
HGV 4378 1022 1339 877 524 554 63

Emissions (%) 100.0% 13.6% 25.5% 19.9% 14.3% 22.4% 4.2%
Share during peaks (%) 34.2% 35.9% 35.0% 34.0% 33.3% 33.2% 33.8%
Share of URF (%) 19.4% 33.9% 23.2% 19.3% 15.9% 11.0% 6.6%

NOx

Emissions (tons/day) 122.5 17.5 30.5 23.7 17.5 27.9 5.4
PC 86.6 8.5 19.4 16.7 13.4 23.7 4.9
LGV 5.9 1.5 1.8 1.1 0.7 0.7 0.1
HGV 30.0 7.5 9.3 5.9 3.4 3.5 0.4

Emissions (%) 100.0% 14.3% 24.9% 19.3% 14.3% 22.8% 4.4%
Share during peaks (%) 32.6% 34.9% 33.4% 32.1% 30.9% 31.5% 33.3%
Share of URF (%) 29.3% 51.4% 36.4% 29.5% 23.4% 15.1% 9.3%

PM10

Emissions (tons/day) 14.8 1.9 3.7 3.0 2.2 3.4 0.6
PC 10.4 1.0 2.4 2.1 1.6 2.8 0.5
LGV 0.7 0.2 0.2 0.1 0.1 0.10 0.00
HGV 3.7 0.7 1.1 0.8 0.5 0.5 0.1

Emissions (%) 100.0% 13.0% 25.2% 20.0% 14.8% 22.9% 4.2%
Share during peaks (%) 31.8% 31.6% 32.4% 30.0% 31.8% 32.4% 33.3%
Share of URF (%) 29.6% 46.4% 35.1% 30.3% 26.0% 18.9% 11.3%

Note: “VDUA” stands for very dense urban area, “DUA” for dense urban area, “UA” for urban area, “DIUA” for diffuse urban area and “IA” for
interurban area.

17 Crossing the mean emissions factors (Table C.2) with the load weight of vehicles (Table B.2), we find for NOX that HGVs emit 2.68 g/tkm vs. 3.13 g/tkm for LGVs.
In the case of PM10, we find 0.34 g/tkm for HGVs and 0.37 g/tkm for LGVs. The gap is more pronounced for CO2: emissions from HGVs reach 392.60 g/tkm, as
compared to 893.23 g/tkm for LGVs.
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goods vehicles (Table C.1). Whereas the indicator strictly decreases from Paris to interurban areas for the whole traffic (mostly
composed of PCs), it increases for LGVs and HGVs, save for a few exceptions. The relationship between travel speed and emission
factors varies depending on the vehicle type and the pollutant considered indeed, sometimes U-shaped, sometimes monotonously
decreasing (Fig. A.1). Accordingly, when the mean travel speed increases from Paris to the interurban areas, the unit emission rate
may either increase or decrease depending on the shape considered (Table C.2). In the case of PM10 for instance, maximal emission
rates are found in Paris city for HGVs, while they are found in interurban areas for LGVs. In the case of LGVs, the peculiar M-shaped
behavior of the averaged PM10 emission factor highlights that other complex mechanisms are at work. Though not thoroughly
investigated in this paper, differences in route choice depending on the vehicle type (being driven by different parameter values) or
heterogeneous traffic speeds within zones are likely to explain this puzzling mapping between average emission factors and average
traffic speeds.

4.2. Exposure to local pollutants

Road transport is not the sole determinant of air quality. The concentration of local pollutants depends on other sources of
emissions - residential or commercial buildings, industries, etc. - located in IdF, but also in surrounding regions. Pollutants disperse in
the atmosphere indeed, depending on climatic conditions, urban topography, etc. (Di Sabatino et al., 2007). Moreover, the exposure
of individuals varies with distance from the emission point (here roads) and time spent outdoor (Karner et al., 2010). While a detailed
impact assessment would subsequently require an even more comprehensive model (e.g. Shorshani et al., 2015), we propose a simple
indicator of exposure to local pollutants:

= × +
× +

Exp DPresent DNOx DPM
DPresent DNOx DPM

( )
( )i

i i i

IDF IDF IDF (1)

where DPresenti is the density of individuals “present” in municipality i, and DNOxi and DPMi the density of NOX and PM10

emissions (in t/km2), respectively. In order to consider the spatial mismatch between residences and work places, DPresenti is
computed as the weighted average between population (during 16 h) and job (during 8 h) densities in city i. Finally, Expi is nor-
malized by the regional average value.

We find that exposure to local pollutants from road traffic varies considerably over IdF (Fig. 4). The 20% most exposed muni-
cipalities are almost all located in the core of the Paris region. Conversely, most of the 20% least polluted municipalities are found
within the fringes of IdF. Considering the ranges of the quintiles (with a median of 0.004), the indicator is highly skewed. This
suggests that exposure to local pollutants is strongly concentrated in the core of the metro area, where traffic density is very high,
speed is very slow (hence a high emission intensity), and where more people are impacted by pollutant emissions. Computing
exposure indicators separately for PCs and goods vehicles leads to similar results (Table C.3), except that exposure issues are even

Fig. 4. Exposure to local pollutants from road traffic, Source: authors’ elaboration.
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more localized within Paris for URF than for PCs.

4.3. Environmental social cost

Finally, we estimate the environmental social cost of road traffic in general, and of URF in particular. Whereas greenhouse gases
contribute to climate change costs (Goulder and Mathai, 2000; Tol, 2009), local pollutants are “costly” inasmuch as exposed in-
dividuals are more likely to face health problems, inducing potential earnings losses for households and health expenditures for
society. They also imply agricultural losses and building deteriorations (Kampa and Castanas, 2008; Ricardo-AEA, 2014; WHO,
2016). A large literature proposes parameters to monetize these damages (Ricardo-AEA, 2014).

We here apply the French official parameters available in the appendix of the Quinet report (Ducos, 2014). These external costs
have been estimated by following a procedure that is consistent with the “Impact Pathway Approach”, while accounting for French
specificities. The shadow price of PM2.5 is significantly larger than that of NOx (€9070 per ton), especially in the core of the Paris
region where each ton of PM2.5 emitted in the atmosphere entails social losses valued at 4.5 M€ (Table 8).18 Regarding particulate
matter, let us note that Copcete estimates PM10 emissions, and not directly PM2.5. When computing the environmental social cost of
road traffic in the Paris region, we will thus consider that 65% of PM10 emissions are made of PM2.5 (Airparif, 2014). Regarding CO2,
the Quinet report (CGSP, 2013) recommends a central value of €35.8 per ton in 2012.

By crossing these marginal costs with the tonnages of pollutants emitted within each macro-zone (Table 7), we find that emissions
from road traffic entail social losses for IdF evaluated at 23.1M€/day (Table 9), that is 1.9 € per capita per day. Aggregated over 260
working days, the bill adds up to 6.0 billion €, corresponding to 0.98.4% of the regional GDP (612 billion € in 2012). This figure falls
within the upper-bound of estimates found for European countries (de Palma and Zaouali, 2007). Considering that the Paris region is
denser, our results seem consistent. Lastly, as the aggregate (private) generalized costs of road transport amount to 90M€/day (Table
B.3), fully internalizing the external costs of local pollutants (through a dedicated tax) would raise the average trip cost for road users
in IdF by 25.7%.19

Our methodology allows us to break down the environmental social cost by area and by vehicle class. Paris and the very dense
urban areas of IdF concentrate 77% of the total bill. By contrast, externalities in interurban areas are negligible. Regarding the impact
of URF, it is responsible for 36% of the total losses, while representing only 8% of the total distances traveled and 20–30% of
emissions. This is the combined effect of freight vehicles emitting more than PCs, but also of freight traffic being more concentrated
(in dense areas) than regular traffic, thereby affecting more population. The social cost of URF is especially high in the core of the
agglomeration indeed, HGVs and LGVs accounting for 46% of total losses in Paris city. HGVs in particular are responsible for losses
equal to 0.29% of the regional GDP (still considering 260 working days per year), against only 0.06% for LGV.

Quite unexpectedly, climate change costs play a minor role in our results: extra losses only amount to 1.1 M€/day, in other words
5% of total environmental costs. By contrast, losses linked to the emissions of PM2.5 account for 90% of total social costs.
Furthermore, URF only represents around 19% of the CO2 related costs, against 37% of air pollution related ones. Based on the
monetary equivalents of environmental damages reported in the French guidelines (CGSP, 2013), currently public policies should
focus on addressing local pollution in Paris rather than abating CO2 emissions, especially so in the case of URF.

5. Discussion

We discuss in this section some limitations of our methodology and/or of our data and to what extent they influence our main
findings.

5.1. Influence of the vehicle fleet

Our estimates of pollutant emissions are based on the national composition of the vehicle fleet instead of that of IdF, due to the

Table 8
Marginal external costs related to pollutants emissions (2012).
Source: authors’ calculations from Ducos (2014).

Paris+VDUA DUA UA DIUA IA

PM2.5 (€/ton) 4,564,011 1,521,337 507,112 169,037 16,963
NOx (€/ton) 9070.3
CO2 (€/ton) 35.8

Note: “VDUA” stands for very dense urban area, “DUA” for dense urban area, “UA” for urban area, “DIUA” for diffuse urban area and “IA” for
interurban area.

18 Because the densest category proposed by the Quinet report corresponds to a lower bound of 4500 inh./km2, central Paris and the very dense urban areas are for
all practical purposes assumed to have the same density in our computations, despite the markedly higher density of Paris. By biasing our results downward, this last
point implies that our estimates should be rather conservative in this respect.
19 This is actually an upper bound because introducing this tax would lower road traffic, thus congestion, ultimately leading to a decrease in generalized costs

(before tax).
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lack of data at the regional level. This could bias our results, considering that emission factors are highly sensitive to the vehicle
category (in terms of emission standards or weight categories).

A recent study of Carteret et al. (2015), who use video data to estimate the fleet composition by vehicle class (PCs, LGVs, HGVs)
and emission standards for the Paris region, finds that the vehicle fleet of IdF is not that different from the national fleet in terms of
emission standards, whatever the vehicle class considered. The main exception is for HGVs. Carteret et al. (2015) find old trucks
(Euro-0-I-II) to be overrepresented in IdF (16% against 5% at the national level), while recent trucks (Euro-V) are underrepresented
(26% against 44%). Similarly, they find 26% of Euro-III HGVs at the regional level, against 21% at the national level. Because the
regional fleet of HGVs also strongly differs from the national one regarding the size of vehicles (with typically smaller trucks in IdF20),
these various differences compensate for each other to some extent, so that ultimately the authors conclude that using the national
fleet instead of the regional one only leads to limited errors for most pollutants, especially for freight vehicles (see Carteret et al.,
2015, Table 5). For instance, for LGVs using the national fleet leads to overestimating PM10 and NOx by +6% and +3% respectively,
while being neutral for CO2. Regarding HGVs, the errors are similarly relatively limited except for CO2 (+11%). Under-estimation
issues are both more systematic and more significant in the case of PCs, with for instance an under-estimation of CO2 by −25%.

All in all, this suggests that our results are fairly robust for freight vehicles, but likely underestimated for PCs. The issue is more
salient for CO2: by applying the corrections proposed by Carteret et al. (2015), the share of URF falls from 19% to 15%. For local
pollutants on the other hand, the share of URF only decreases from 29% to 27% for NOx, and is virtually unaffected for PM10. Note
that the quality of the results of Carteret et al. (2015), based on video data recorded for a limited number of geographical sites, has yet
to be ascertained, reason why we use the national composition in our main application.

5.2. Influence of the load factor

Load weights of HGVs being often difficult to measure, we investigate to what extent our results are sensitive to them. The load
factor has two main effects on pollutants emissions. Because the truck is heavier as a result, a higher load factor implies greater
emission factors per vkm.21 For a mean speed of 40 km/h, doubling the load factor of HGVs from 50% to 100% increases the
emissions produced by Copcete by 22% for CO2, 9% for NOx, and by only 2% for PM10. As illustrated by this example, emissions per
vkm increase less quickly than the load weight - be it only due to the sheer weight of the vehicle - so that a higher load factor
conversely implies lower emissions per tkm. Based on additional simulations in Copcete, we may conclude that emissions per vkm are
not so sensitive to the load factor – an error of 10% on the load factor entailing an error of 4–5%, 2–3% and 0.2% for CO2, NOx and
PM10, respectively – but that emissions per tkm are mechanically sensitive to it from the denominator effect. In other words, errors
regarding load factors lead to small errors regarding aggregate emissions and emissions per vkm, but to larger errors regarding
emissions per tkm.

In our case study, the average load weights are relatively low: 0.3 t for LGVs and 1.9 t for HGVs.22 In the latter case, crossing this
mean tonnage of 1.9 t with the breakdown of the national fleet by weight category yields an average load factor of only 11%
approximately.23 Accordingly, we find that HGVs pollute only marginally less than LGVs when reasoning in emissions per tkm (see

Table 9
Environmental social cost of road traffic in the Paris region (2012).
Source: authors’ calculations.

IdF Paris VDUA DUA UA DIUA IA

Total social costs (M€/day) 23.06 6.02 11.64 3.38 1.04 0.88 0.10
PCs 14.80 3.22 7.58 2.37 0.79 0.74 0.09
LGVs 1.34 0.49 0.63 0.15 0.04 0.03 0.00
HGVs 6.91 2.31 3.43 0.85 0.21 0.11 0.01

Total social costs (%) 100.0 26.1 50.5 14.7 4.5 3.8 0.4
Share of URF (%) 35.8 46.4 34.9 29.7 24.2 15.5 8.0

Including CO2 related costs
Social costs (M€/day) 1.12 0.15 0.29 0.22 0.16 0.25 0.05
Share of URF (%) 19.4% 33.9% 23.2% 19.3% 15.9% 11.0% 6.6%

Note: “VDUA” stands for very dense urban area, “DUA” for dense urban area, “UA” for urban area, “DIUA” for diffuse urban area and “IA” for
interurban area. PM2.5 emissions are found by applying a 0.65 factor to PM10 emissions (Table 7)

20 The distances traveled by the national fleet of HGVs, as documented in Copcete and considered in this research, is equally distributed between articulated and
rigid trucks. By contrast, Carteret et al. (2015) estimate that rigid trucks, typically smaller than articulated trucks, account for 90% of distances traveled by HGVs in the
Paris region.
21 For LGVs, Copcete considers emission factors independent of the load rate.
22 Load weights reported in Table B.2 come from Beziat et al. (2017). Using one urban goods survey carried out in 2011 in the Paris region, they estimate – among

other things – the mean weight of the cargo over the whole vehicle delivery round. This implies that said load weights include empty trips (empty backhaul,
intermediary empty trips between deliveries and pick-ups, etc.).
23 While Copcete provides information on the HGV fleet structure according to 14wt categories, to put it simpler the distribution of traveled distances in 2012 can

be approximated as follows: 50% for articulated HGVs (with a mean useable weight of 24 t), 30% for small rigid trucks (6.5 t) and 20% for large rigid trucks (17 t).
Accordingly, the average useable weight in our sample is 17 t for HGVs, thus leading to the average load factor of 11%.

N. Coulombel et al. Transportation Research Part D 63 (2018) 514–532

524



Footnote 17), which would seem still enough to question the environmental relevance of policies aimed at switching from trucks to
light commercial vehicles in urban areas. Our previous comments and calculations call for considering this last result with caution,
however, as emissions per tkm are quite sensitive to measurement errors. Even if this issue calls for further research, based on the
same elements we believe that our main results – namely the aggregate emissions and the corresponding social cost – are fairly robust
to errors regarding load factors.

5.3. Influence of the valuation parameters

Our valuation of CO2 emissions is based on the French official value of €35.8 per ton for year 2012 (CGSP, 2013). While the
carbon price issue does remain highly controversial (Tol, 2009), this value may seem relatively low in comparison to recent European
values, which range from €48 to €168 per ton for year 2010, with a central value at €90 per ton (Ricardo-AEA, 2014).24 Similarly, the
value proposed by Ricardo-AEA (2014) to monetize the external cost of NOx emissions in France is much larger (€13,052 per ton)
than the one considered in Table 8 (€9070 per ton). By contrast, French official guidelines (CGSP, 2013; Ducos, 2014) put a dis-
proportional weight on damages linked to PM2.5 emissions as compared to European recommendations. In order to investigate the
influence of these cost parameters, we re-estimate the environmental social cost of road traffic in IdF, this time using the external
costs reported in Ricardo-AEA (2014).

Following the European official guidelines leads to a markedly lower environmental social cost than by applying French values.
Even though Ricardo-AEA (2014) features higher shadow prices for CO2 and NOX, the environmental social cost hardly reaches 6M€
per day (Table 10), as opposed to 23M€ previously (Table 9). This strong difference is due to the considerably higher shadow price of
PM2.5 in French national guidelines, which itself results from (at least) two French specificities: the Quinet report (CGSP, 2013)
considers a statistical value of life equal to 3M€ - against 2M€ in the European Handbook - and it defines valuation parameters for a
wider spectrum of urban areas in terms of population density (given the very high densities in some parts of France, especially within
the Paris metro area), reasons why we prefer to stick on benchmark results shown in Table 9.

This being said, this sensitivity test confirms most of our previous findings. First, environmental social losses are again strongly
concentrated in dense urban areas (73%), where more pollutants are emitted (67%) and more population is affected. Second, the
impact of URF remains considerable (26% of the overall social cost) relatively to its weight in the total traffic (only 8% of traveled
distances). Third, even if CO2 emissions now account for a much larger share of total environmental costs (47% on average, against
only 5% in our baseline valuation), their relative contribution is lower in dense areas, where air quality issues are preponderant.
Lastly, the environmental social cost of URF in the Paris region remains non-negligible. Aggregated over a year, it adds up to around
0.4 billion €, corresponding to approximately 0.07% of the regional GDP.

Overall, from a qualitative point of view, the main difference between the two valuations – using either French values or European
ones – relates to the importance of global warming within the total environmental social cost. Considering that the French value in
2012 (35.8€/ton) does seem quite low in comparison to European values, and that the carbon price is expected to soar over the years
as CO2 levels keep rising and the effects of global warming become more harmful for populations, wildlife, and flora, this suggests one
should not take our results at face value regarding the contribution of CO2 emissions to the total environmental social cost and
minimize the issue of global warming, which could have grave consequences in the long run.

6. Conclusion

This paper estimates the environmental social cost of urban road freight in the Paris region, focusing on greenhouse gas emissions
and air pollution. For that purpose, we develop a modeling chain including a freight (and passenger) travel demand model, a

Table 10
Sensitivity to external costs.
Source: authors’ calculations from Ricardo-AEA (2014) and Copcete estimates.

Rural areas Suburban areas Urban areas IdF

CO2 costs (€/ton) 90.0
NOX costs (€/ton) 13,052
PM2.5 costs (€/ton) 33,303 64,555 211,795
Environmental social cost (M€/day) 0.61 1.00 4.33 5.94
Share in total (%) 10.3 16.8 72.9 100.0
Share of URF (%) 10.9 16.1 30.6 26.1
Share of CO2 (%) 59.0 55.7 43.8 47.4

Note: “Rural areas” stands for areas with population density below 150 inh./km2, “Surburban areas” for areas with population density ranging from
150 inh./km2 to 900 inh./km2, “Urban areas” for areas with more than 900 inh./km2. PM2.5 emissions are found by applying a 0.65 factor to PM10

emissions (Table 7).

24 These costs parameters are subject of huge debates among specialists, depending on the social discount rate used for computations or expected future trends in
CO2 emissions notably (Tol, 2009). As such, it is worth noting that CO2 cost proposed in the previous (2008) European “Handbook on the External Costs of Transport”
was equal to €25 per ton.
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multiclass traffic assignment model, and a mobile emissions model, allowing for a fine spatial representation of URF. As a result of
several mechanisms at work (heterogeneity in speeds and route choices, non-linearity of emission factors with respect to vehicle
speed, etc.), there is no clear mapping between average traffic speeds and average emission factors at the aggregate level: to one same
mean traffic speed may correspond various emission factors depending on zonal characteristics. This corroborates the relevance of
using a modeling chain instead of a simpler aggregate model. Similarly, the environmental social cost of road traffic substantially
varies depending on the vehicle class or the population density, again supporting the use of a full-fledged model (featuring multiclass
assignment and a fine spatial resolution).

While representing only 6% of trips and 8% of distances traveled, urban road freight accounts for 36% of the total damages caused
by pollutant emissions from road traffic in IdF. This is the combined result of freight vehicles emitting more than PCs, and of freight
traffic being more spatially concentrated than passenger traffic, thereby affecting more population. The density and efficiency of the
public transport network (combined with a scarce parking supply) help restrict the use of PCs within the central parts of the Paris
area. For freight however, alternatives are limited and marginal to date, hence the greater spatial concentration than for passenger
traffic. Congestion also plays an important role, inasmuch as lower speeds lead to greater emission factors (André and Hammarstrom,
2000; Grote et al., 2016). Because freight transport is more concentrated within high density areas where traffic speeds are lower due
to heavy traffic levels, this also partly explains why URF emits more than PCs.

All in all, the environmental social cost of URF adds up to around 2.1 billion € per year, or 0.35% of the regional GDP. Our
findings also provide some directions for public policies. Based on the current economic evaluation guidelines in France, we find that
damages from air pollution are nineteen times higher than damages from CO2 emissions in the case of URF. Applying European values
rather than French one for the cost of CO2 emissions and of local pollutants leads to a very different picture however, as the weight of
CO2 emissions becomes equivalent to that of air pollution within the total environmental social cost. Be that as it may, the con-
centration of social losses within the densest parts of the Paris region in both instances strongly advocates transport policies such as
low-emission zones or urban tolls that aim to regulate HGVs and LGVs use within the city center, and more generally all policies
aiming to address the last-mile issue with green and sustainable logistics. Alternatively, fully internalizing the social cost of pollutant
emissions would involve raising the average private cost of HGVs and LGVs by a maximum of 90% and 33%, respectively. Though
this seems difficult in the short run for economic reasons, this provides a policy framework. Our findings remain mixed regarding the
issue of LGVs versus HGVs. HGVs would emit more per vkm, but only slightly less per tkm. Emissions per tkm are very sensitive to
measurement errors, however, which are quite likely in the case of load factors. Considering that HGVs and LGVs are not perfect
substitutes to boot, this issue calls for further investigation.

In addition of the various issues raised in the previous section, our findings are subject to a certain number of caveats. First, the
generality of the results has yet to be assessed through comparison to other case studies. This raises the issue of the transferability of
our methodology, based on four main elements: a freight demand model, a passenger travel demand model, an emissions model, and
last external cost parameters. National guidelines for economic appraisal would typically include external cost parameters, so that
these are usually easily available. Similarly, most large cities around the world – especially in developed countries – have developed
their own passenger travel demand model (most often a standard 4-step model) and emissions model in order to meet their study
needs. However, fewer have a freight demand model at their disposal (see reviews by Comi et al. (2012) or Comi et al. (2014)). Unlike
for passenger travel, freight commercial software are seldom, so that academic models must often be used instead - as we do here.
Even more importantly, models need appropriate surveys to be calibrated, which are again less common for freight than for passenger
travel. This last point – the availability of a detailed freight demand survey, including trip generation by establishments (in order to
quantify trips for each type of activity) and freight rounds surveys (to characterize transport organizations and travelled distances) –
is likely the most critical point for the development of a similar modeling chain.

Second, while this paper has shed light on the specific role of URF regarding pollutant emissions in IdF, we have yet to test policy
scenarios such as suggested above aimed at reducing those emissions (as done by Kickhofer and Kern (2015); Ellison et al. (2013),
Holguin-Veras et al. (2006) or by Aditjandra et al. (2016) for the cases of Munich, London, New York and Newcastle respectively; see
also the reviews of policy options by Demir et al. (2014); or by Russo and Comi (2016)). In particular, considering the prevalence of
the air pollution issue as regards URF, recent works regarding passenger traffic suggest that road pricing (such as tolls, Fu and Gu,
2017) might be more effective than regulation (such as license plate driving restrictions, Zhang et al., 2017a, 2017b) to reduce air
pollution, especially during pollution peaks.25 Finally, our estimates of the environmental social cost of URF are likely conservative,
inasmuch as they include neither the effects of air pollution on mental health and subjective well-being (Zhang et al., 2017a, 2017b),
nor other nuisances such as noise and lifecycle effects of vehicles and energy.
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Appendix A. Modelling framework

A.1. Travel demand for urban road freight

Freturb is a multipurpose model designed for urban freight analysis (Routhier and Toilier, 2007).26 Here it is used to estimate
travel demand (i.e. OD matrices) for URF. In Freturb, the number of weekly movements (ne) generated by an economic establish-
ment27 (e) is explained by its industry sector (a), its number of employees (o), and the nature of its premises (p).28 Accordingly, the
total number of movements Mzin zone z writes:

∑=
∈

M n a p o( , , ).z
e z

e
(A.1)

The combination of these variables gives rise to a typology of establishments, comprising 116 different classes noted ε, each
representing a unique triplet a p o( , , ).

Goods movements may also be broken down according to the transport characteristics: the vehicle class k (LGVs, rigid or ar-
ticulated HGVs), the management mode m (third party logistics, own account transport shipper or consignee) and the route type r
(direct or round trips). This gives:

∑= ×M M f ε( ),z
ε k m r

ε z k m r
, , ,

, , ,
(A.2)

where fk,m,r(ε) denotes the frequency of characteristics k m r( , , ) among establishments of class ε and Mε z, the number of move-
ments generated by establishments of class ε in zone z.

Next, based on the volumes and types of goods movements in each zone, Freturb estimates the total number of trips tz in zone z as:

= + +t dt se cz z z z (A.3)

where dtz refers to direct trips, sez to starting and ending trips and cz to connecting trips of delivery rounds. The distance of each
trip type is determined from geographical variables (distance to the center of each zone, density of activities) and the characteristics
k m r( , , ) of the establishment category ε.

Finally, Freturb applies one typology of trips, characterized by the vehicle class, the trip type, the management mode and the
route length. According to this 25 class categorization, the beginning of each τ-type trip which touches the zone zjmatches the
movement of τ-type trips generated in zi. The final OD matrix Tij is the sum of the OD t k( )ij obtained for each vehicle class k:

∑=T t k[ ( )]ij
k

ij
(A.4)

In order to operate, Freturb requires the distribution of characteristics a p o( , , ) within establishments. In our application, the
SIRENE database provides information at the municipality level for the Paris region regarding the activity (a) and the size (o) of
establishments, but not about their premises (p). The Simetab model allows to tackle this issue by imputing information missing from
the SIRENE dataset. To do so, it relies on a typology of urban spaces determined through the analysis of different SIRENE files and
other local data in several French metropolitan areas and for various years (Gardrat et al., 2014). Each type of urban space is
associated with a given distribution of the characteristics a p o( , , ). Using statistical classification methods, Simetab first defines urban
categories (highly residential, lower density area, high tertiary activity, commercial, etc.) heterogeneous in their economic structures.
Multiple discriminant analyses are then applied to assign each zone present in the dataset to one urban category. By comparing the
economic structure of the zones to their typological counterparts, Simetab finally matches each firm observed in the dataset with a
category ε a p o( , , ), thus insuring the operability of Freturb.

A.2. Multiclass traffic equilibrium

Traffic conditions in the Paris area are estimated using a static multiclass traffic assignment procedure (Dafermos, 1972),29

available in the TransCAD software.
Originally designed to determine traffic levels on particular roads for a given day period, assignment models can also be used to

derive the shortest path between any OD pair, and the corresponding travel time, distance and speed (Coulombel and Leurent, 2013).

26 Interested readers may also refer to Routhier et al. (2001), Bonnafous et al. (2013) and Toilier et al. (2014) for more information about the model specification as
well as the quality of calibration regarding freight trip generation and travelled distances.
27 A firm is a legal entity that may consist of several establishments (i.e. premises). We use both terms interchangeably. Note that while the scope of our research

includes establishments engaged in an activity, including public administrations, small and large businesses, and so on, it does not include private households. B2C e-
commerce flows, therefore, are not considered in our analysis.
28 This was validated using freight surveys collected in France during the 1990s (Patier and Routhier, 2009).
29 The term static emphasizes the fact that one focuses on one given time-of-day period, assumed in steady state, as opposed to dynamic models that seek to

reproduce the intra-day dynamics of traffic.
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Congestion plays a central role in these models (Ortuzar and Willumsen, 2011). As more users take the same road, it becomes
congested and travel time increases. This is represented by a volume-delay function (VDF), the most common - used here - being the
Bureau of Public Roads (BPR) function (TRB, 2010):

⎜ ⎟= × ⎛
⎝

+ × ⎛
⎝

⎞
⎠

⎞
⎠

tt tt α F
K

1 ,f

β

(A.5)

where tt is the travel time on a given link, ttf the free-flow travel time (no congestion), F the traffic flow, K the link road capacity,
and α and β are (positive) congestion parameters.

As congestion starts to builds up, some drivers turn to alternative routes, thus causing congestion on the corresponding links. Such
strategic interactions between users develop until a traffic equilibrium – called Wardrop equilibrium – is reached (Ortuzar and
Willumsen, 2011). At equilibrium, for any given OD pair, the generalized cost of travel of all alternative paths are equalized (the cost
of unused paths being greater than this minimum cost), i.e. drivers do not have any incentive to change their routes. The generalized
cost associated to a path p synthesizes both time and money as follows:

= × + ×GC VOT tt c l ,p
k k

p
k

p (A.6)

where the variables ttp and lp denote the travel time and the length of path p respectively, VOTk the value of travel time savings of
class k users and ck the kilometric cost (fuel, insurance, depreciation, etc..). As the route choice involves a trade-off between travel
time and distance, the path(s) with the minimum generalized cost would generally be neither the fastest nor the shortest, but rather a
compromise between the two.

Our road assignment model distinguishes four user classes k: PCs, LGVs, rigid and articulated HGVs. While assumed to travel all at
the same speed on a given link, each vehicle class is characterized by different values of travel time and kilometric costs. Accordingly,
route choices may differ from one class to another for a given OD. Furthermore, all types do not weigh the same within the VDF
function. The flows Fkof each vehicle class k are converted into a passenger car equivalent (PCE) metric before being summed (and
then used in the volume-delay function):

∑= ×F PCE F
k

k k
(A.7)

The PCEk factor describes the amount of road space occupied by one vehicle of class k relatively to one private car, in order to
reflect that one truck generates more congestion than one car (Webster and Elefteriadou, 1999; TRB, 2010).

A.3. Pollutant emissions

Copcete (Demeules and Larose, 2012) is based on the European COPERT IV methodology (Ntziachristos et al., 2009; Shorshani
et al., 2015). It compiles emission factors for various driving cycles (representative in terms of speeds, load rates, slopes of the roads)
and vehicle types (in terms of classes, weights or technologies).

We consider in this research only “exhaust emissions” from road traffic and neglect those related to the evaporation of pollutants.
As illustrated on Fig. A.1 for NOX emitted by diesel vehicles, the unitary emissions depend on the vehicle class and on the engine
technology. For a given legal standard and a traffic speed of 15 km/h, HGVs emit three times more NOX than LGVs, themselves
polluting twice more than PCs. The effect of technological changes is substantial, as shown here only in the case of LGVs. Considering
one LGV driving at 20 km/h, Euro 4 vehicles emit around three times less NOx per kilometer than Pre-Euro vehicles. Lastly, unitary
emissions are not a linear function of vehicle speed. In the case of PCs and LGVs, the U-shaped curves reach their minimal values at
travel speeds of 60–70 km/h approximately.30

In addition of these factors, unitary emissions of HGVs are also modeled in Copcete as a positive function of the road slope
(assumed to be zero here) and of the load rates of vehicles (assumed to be 50%). Copcete also takes into account for PCs and LGVs
over-emissions due to “cold-start phases”, i.e. when engines are not warm yet. Although the correction factor theoretically depends
on climatic conditions and on the share of distances driven at “non-stabilized regime”, Copcete estimates over-emissions based on an
average trip distance (6 km here).

Copcete can straightforwardly use the road assignment model outputs, at the road link level. Formally, the total emissions TEs
j of

pollutant j on link s are given by:

∑ ∑= × ∅ × ×TE l F e S( )s
j

s
k x

x
k

s
k

x
jk k

(A.8)

where ls describes the length of link s, ∅x
k the share of vehicles using the technology x within the total flow Fs

k of the vehicle class
k, and e S( )x

jk k the emission factor of pollutant j for the class k vehicles using the technology x, i.e. a function of the traffic speed (Sk).
Regarding the parameters ∅x

k , Copcete considers the precise composition of the French national vehicle fleet for a given year, in terms
of emission standards, energy types and weights.

30 Copcete estimates PCs and LGVs emissions for speeds ranging from 10 km/h to 130 km/h. For HGVs, the range is 12–86 km/h. As a consequence, the traffic
speeds given by the traffic assignment model have to be adjusted to feed Copcete. Changes are negligible, except for HGVs in interurban areas where the mean speed
drops from 73.8 km/h to 69.7 km/h. It is worth noting, however, that interurban areas account for only 2% of total road links.
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Appendix B. Additional data for the road assignment model

Tables B.1–B.3

Table B1
Characteristics of the road network.
Source: authors’ calculations from DRIEA and TransCAD.

IdF Paris VDUA DUA UA DIUA IA

Road links 39,420 4688 10,959 10,184 6370 6406 813
Total road length (km) 20,480 1033 3220 3479 2990 7554 2204
Road density (km/km2) 1.7 9.8 5.8 3.6 2.3 1.2 0.8
Free-flow speed (km/h) 58.2 43.7 54.8 61.4 64.1 63.3 62.6
Road capacity (veh/h) 1709 2121 1702 1564 1660 1701 1705

Note: “VDUA” stands for very dense urban area, “DUA” for dense urban area, “UA” for urban area, “DIUA” for diffuse urban area and “IA” for
interurban area.

Table B2
Cost and technical parameters.
Source: Beziat et al. (2017).

PC LGV HGV

Monetary costs (€/km) 0.271 0.365 0.842
Vehicle occupancy (ind./veh) 1.3 1.0 1.0
Value of time of individuals (€/h) 10.7 9.8 9.8
Load weight (tons/veh) 0.0 0.294 1.941
Value of time of goods (€/ton/h) 0.0 0.6 0.6
PCE factors 1.0 1.5 2.0–2.5

Note: we consider a PCE (Private Car Equivalency) factor of 2 for rigid HGV and 2.5 for articulated HGV.

Fig. A1. NOX emissions of diesel vehicles, Sources: authors’ elaboration from Copcete.
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Appendix C. Additional data for the environmental analysis

Tables C.1–C.3

Table B3
Total travel costs.
Sources: authors’ calculations from TransCAD.

IdF Paris VDUA DUA UA DIUA IA

Travel costs (M €/day) 90.0 13.4 24.4 18.2 12.3 18.3 3.4
PC 78.4 10.5 20.8 16.0 11.0 16.9 3.2
LGV 4.0 1.1 1.3 0.7 0.4 0.4 0.1
HGV 7.6 1.7 2.3 1.5 0.9 1.0 0.1

Travel costs (%) 100% 14.9% 27.1% 20.2% 13.7% 20.3% 3.8%
Share during peaks (%) 37.7% 41.0% 38.9% 37.4% 35.8% 35.0% 35.3%
Share of URF (%) 12.9% 20.9% 14.8% 12.1% 10.6% 7.7% 5.9%

Note: “VDUA” stands for very dense urban area, “DUA” for dense urban area, “UA” for urban area, “DIUA” for diffuse urban area and “IA” for
interurban area.

Table C1
Indicator of emission intensity.
Source: authors’ calculations.

Paris VDUA DUA UA DIUA IA

CO2 All traffic 1.27 1.07 1.00 0.93 0.89 0.86
URF 2.15 2.32 2.38 2.52 2.50 2.54

NOx All traffic 1.34 1.04 0.97 0.93 0.91 0.90
URF 3.25 3.64 3.64 3.71 3.43 3.58

PM10 All traffic 1.21 1.05 1.00 0.96 0.91 0.86
URF 2.94 3.51 3.74 4.13 4.30 4.35

Note: “VDUA” stands for very dense urban area, “DUA” for dense urban area, “UA” for urban area, “DIUA” for diffuse urban area and “IA” for
interurban area.

Table C2
Averaged emission factors.
Source: authors’ calculations from Copcete.

IdF Paris VDUA DUA UA DIUA IA

CO2 by PC (g/km) 177.00 202.60 183.37 176.46 169.30 168.38 168.49
CO2 by LGV (g/km) 262.61 284.66 254.61 257.15 253.87 259.53 256.28
CO2 by HGV (g/km) 762.04 924.20 785.16 729.26 673.82 648.95 622.65
NOx by PC (g/km) 0.61 0.61 0.58 0.59 0.60 0.64 0.66
NOx by LGV (g/km) 0.92 1.01 0.91 0.90 0.88 0.88 0.87
NOx by HGV (g/km) 5.21 6.82 5.45 4.89 4.33 4.08 3.80
PM10 by PC (g/km) 0.07 0.07 0.07 0.07 0.07 0.07 0.08
PM10 by LGV (g/km) 0.11 0.10 0.10 0.11 0.10 0.12 0.12
PM10 by HGV (g/km) 0.65 0.67 0.65 0.64 0.64 0.63 0.63

Note: “VDUA” stands for very dense urban area, “DUA” for dense urban area, “UA” for urban area, “DIUA” for diffuse urban area and “IA” for
interurban area.

Table C3
Indicators of exposure to local pollutants.
Source: authors’ calculations.

Paris VDUA DUA UA DIUA IA

From all road traffic 35.15 4.55 0.52 0.11 8 * 10−3 3 * 10−4

From URF 41.21 3.81 0.32 0.05 3 * 10−3 7 * 10−5

From PCs 29.43 5.25 0.70 0.16 0.01 5 * 10−4

Note: “VDUA” stands for very dense urban area, “DUA” for dense urban area, “UA” for urban area, “DIUA” for diffuse urban area and “IA” for
interurban area.
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Appendix D. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.trd.2018.06.002.
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