

Efficient methods to synthetically create and calibrate MATSim scenarios

Dominik Ziemke Workshop Modéliser les transports d'aujourd'hui et de demain Paris, 26 September 2019

MATSim scenarios

Network

Transport Supply

MATSim scenarios

Network

Transport Supply

penStreetMap

GTFS

. . .

Technische Universität

Berlin

MATSim scenarios

Network

Transport Supply

GTFS

benStreetMap

. . .

Generation of daily plans

- Trip diaries
 - often not openly available
- Big data
 - cell-phone data
 - Twitter
- Transport demand models (activity scheduling models)
 - Some model activity sequences of individuals

MATSim: The beginning or the end of a transport model?

- "Typical" approach to microscopic transport modeling
 - Activity-based demand generation (ABDG)
 - Model demand for transport
 - Dynamic Traffic Assignment (DTA)
 - Assign traffic to network

MATSim: The beginning or the end of a transport model?

- "Typical" approach to microscopic transport modeling
 - Activity-based demand generation (ABDG)
 - Model demand for transport
 - Dynamic Traffic Assignment (DTA)
 - Assign traffic to network
- MATSim contains
 - Activity-based demand <u>adaptation</u>
 - Dynamic Traffic Assignment
 - ...

Recall/Compare: Macroscopic case

Recall/Compare: Macroscopic case

Behaviorally: "Choice dimensions"

- Who? / How many?
- Where to?
- By what mode?
- When?
- Which route?

Recall/Compare: Macroscopic case

Behaviorally: "Choice dimensions"

- Who? / How many?
 - Agents
- Where to?
 - Activities + locations
- By what mode?
 - Mode choice
- When?
 - Departure time choice
- Which route?
 - Routing

Responsible component

"Typical" micro setup

Behaviorally: "Choice dimensions"

ABDM

ABDM

ABDM

ABDM

DTA

- Who? / How many?
 - Agents
- Where to?
 - Activities + locations
- By what mode?
 - Mode choice
- When?
 - Departure time choice
- Which route?
 - Routing

Demand adaptation in MATSim

Home (dep: 06:43) trip (car, route x)

Work (dep: 16:04)

trip (car, route y)

Shopping (dep: 18:04)

trip (car, route y)

Demand adaptation in MATSim: Route choice

Home (dep: 06:43)

trip (car, route a)

Work (dep: 16:04)

trip (car, route b)

Shopping (dep: 18:04)

trip (car, route c)

Demand adaptation in MATSim: Departure time choice

Home (dep: 06:38)

trip (car, route x)

Work (dep: 16:15)

trip (car, route y)

Shopping (dep: **18:20**)

trip (car, route y)

Demand adaptation in MATSim: Mode choice

Home (dep: 06:43) trip (bike, route x) Work (dep: 16:04) trip (bike, route y)

Shopping (dep: 18:04)

trip (bike, route y)

Demand adaptation in MATSim: Destination choice

Home (dep: 06:43) trip (car, route x)

Work (dep: 16:04)

trip (car, route y)

Shopping (dep: 18:04)

trip (car, route y)

Responsible component

"Typical" micro setup

Behaviorally: "Choice dimensions"

• Who? / How many?

Agents

Where to?

Activities + locations

By what mode?

Mode choice

When?

Departure time choice

Which route?

Routing

ABDM

ABDM

ABDM

ABDM

DTA

Responsible component

MATSim "Typical" setup micro setup

• Who? / How many?

"Choice dimensions"

Agents

Where to?

Behaviorally:

Activities + locations

By what mode?

Mode choice

When?

Departure time choice

Which route?

Routing

? ABDM

MATSim ABDM

MATSim ABDM

MATSim ABDM

MATSim DTA

Intermediate summary

- MATSim models much more than a pure DTA model
 - "more" = more choice dimension
- MATSim does not cover ALL choice dimensions of an ABDM
 - "Demand <u>adaptation</u> model"
- Innovative strategy modules (in "replanning" step)
 - Update agents' choice concerning specific choice dimension during the iterations

EXAMPLE 1 OPEN BERLIN SCENARIO

ABDM in Open Berlin Scenario: CEMDAP

- Comprehensive Econometric Microsimulator for Daily Activity-Travel Patterns
- C. Bhat et al., University of Texas

Input

- Disaggregate
 Demographics
- Model Specification

Output

 Daily Activity-Travel Patterns for each individual

ABDM in Open Berlin Scenario: CEMDAP

- Comprehensive Econometric Microsimulator for Daily Activity-Travel Patterns
- C. Bhat et al., University of Texas

Input

- Disaggregate
 Demographics
- Model Specification

Output

 Daily Activity-Travel Patterns for each individual

Demand adaptation in Open Berlin Scenario

Responsible component

MATSim setup

Census + commuter stat.

CEMDAP / ?

CEMDAP / MATSim

CEMDAP / MATSim

MATSim

Behaviorally: "Choice dimensions"

- Who? / How many?
 - Agents
- Where to?
 - Activities + locations
- By what mode?
 - Mode choice
- When?
 - Departure time choice
- Which route?
 - Routing

Demand adaptation in Open Berlin Scenario

Responsible component

MATSim setup

Census + commuter stat.

CEMDAP / ?

Work Locations?

CEMDAP / MATSim

CEMDAP / MATSim

MATSim

Behaviorally: "Choice dimensions"

- Who? / How many?
 - Agents
- Where to?
 - Activities + locations
- By what mode?
 - Mode choice
- When?
 - Departure time choice
- Which route?
 - Routing

Demand adaptation in MATSim: Mode choice

Home (dep: 06:43) trip (bike, route x) Work (dep: 16:04) trip (bike, route y)

Shopping (dep: 18:04)

trip (bike, route y)

MATSim: Simulation and calibration

Set of multiple initial plans

CaDyTS

 calibration integrated into MATSim's genetic algorithm

"Extended" Plan Scoring

- Agents score their executed activities and trips
 - behaviorally
 - in terms of match with real-world observations

MATSim: Simulation and calibration

CaDyTS

 calibration integrated into MATSim's genetic algorithm

"Extended" Plan Scoring

- Agents score their executed activities and trips
 - behaviorally
 - in terms of match with real-world observations

MATSim: Simulation and calibration

- Cadyts as additional component of MATSim's scoring
- "Rewards" plans which contribute to reproduction of reality

Relation to other methods

- Macroscopic models
 - use initial rough OD matrix
 - use traffic counts
 - make OD matrix more appropriate for a region
 - → "OD matrix estimation"
- Microscopic models (here: MATSim)
 - set of initial daily plans
 - use traffic counts
 - select most appropriate plans

Summary of method

- 1. Create synthetic population (in CEMDAP format) 5x
 - Demographic according to census
 - Residential and work locations based on commuter matrix
 - Different refined work location in different syn. pop. versions
- 2. Run CEMDAP for each synthetic population 5x
 - Result: 5 potential daily activity-travel pattern for each agent
- 3. Convert and combine into MATSim plans
 - Results: Plans for all agents with 5 daily plans
- 4. Run MATSim incl. Cadyts
 - Agents choose plans based on
 - assumptions of activity participation and travel behavior
 - reproduction of real-world observations
- 5. Plans at end of simulation = travel demand of study region
 - Perform validation

Results / Public transport statistics

EXAMPLE 2SNF BIG DATA PROJECT

SNF Big Data Project

- Efficiently create transport simulation scenario (Switzerland)
- Based on mobile-phone-data-based OD trip matrices
- Other data must be almost universally available
- Set up an efficient and transferable toolchain

Proposed toolchain

- 1. Synthetic population
- 2. Workplaces (SwissCom mobile phone OD matrix)
- 3. Generation of activity chains
- 4. Location Choice
- 5. Scenario Calibration (SwissCom)

SwissCom OD Matrix

- 12 monthly x 24 hourly trip matrices
- Numbers of trips
- Municipality-municipality relation
- For workdays

00:00-01:00	Munic. 1	Munic. 2	 Munic. n
Munic. 1	#trips	#trips	 #trips
Munic. 2	#trips	#trips	 #trips
Munic. n	#trips	#trips	 #trips

SwissCom OD Matrix

- 12 monthly x 24 hourly trip matrices
- Numbers of trips
- Municipality-municipality relation
- For workdays

00:00-01:00	Munic. 1	Munic. 2	 Munic. n
Munic. 1	#trips	#trips	 #trips
Munic. 2	#trips	#trips	 #trips
Munic. n	#trips	#trips	 #trips

- Time slices of morning peak (e.g. 6:00 to 10:00)
 - Inform commutes, i.e. work municipalities
- Other time slices
 - Calibration

Demand adaptation

Responsible component

MATSim "Typical" setup micro setup

• Who? / How many?

"Choice dimensions"

Agents

Where to?

Behaviorally:

Activities + locations

By what mode?

Mode choice

When?

Departure time choice

Which route?

Routing

? ABDM

MATSim ABDM

MATSim ABDM

MATSim ABDM

MATSim DTA

A more **efficient** way to create a scenario

Responsible component
MATSim "Typical"
setup micro setup

?
ABDM

ABDM

Activity sequences + locations

Behaviorally: "Choice dimensions"

- Who? / How many?
 - Agents
- Where to?
 - Activities + locations
- By what mode?
 - Mode choice
- When?
 - Departure time choice
- Which route?
 - Routing

ABDMs

	CEMDAP	FEATHERS	ActiTopp
Developer	University of Texas	Universiteit Hasselt	Karlsruhe Inst. of Technology
Language	C++	C++	Java
Code	.exe (one version can be inspected)	.exe	Open source (GitHub)
Interaction with MATSim	File-based + database (man.)	File-based (with integration test)	Code-based
Estimation cont.	Los Angeles	Flanders	Germany (MOP)
Input	Many variables	Various variables	A few variables
Output	Full activity-travel patterns for each individual	Full activity-travel patterns for each individual	Activity sequence with dummy trips; no locations, but commute dist.
Spatial transfer and application	Count-based calibration for Berlin	Use in est. context (Flanders)	Use in est. context (Germany)

Other models: ALBATROSS, TASHA, TAPAS, ...

ABDMs

	CEMDAP	FEATHERS	ActiTopp
Developer	University of Texas	Universiteit Hasselt	Karlsruhe Inst. of Technology
Language	C++	C++	Java
Code	.exe (one version can be inspected)	.exe	Open source (GitHub)
Interaction with MATSim	File-based + database (man.)	File-based (with integration test)	Code-based
Estimation cont.	Los Angeles	Flanders	Germany (MOP)
Input	Many variables	Various variables	A few variables
Output	Full activity-travel patterns for each individual	Full activity-travel patterns for each individual	Activity sequence with dummy trips; no locations, but commute dist.
Spatial transfer and application	Count-based cali- bration for Berlin	Use in est. context (Flanders)	Use in est. context (Germany)

Other models: ALBATROSS, TASHA, TAPAS, ...

- models activity chains*
- based on <u>basic</u> demographic information
- estimated on German mobility panel (MOP)
- developed at KIT (Karlsruhe)
- part of the mobiTopp suite
- written in Java
- open source

- models activity chains*
- based on <u>basic</u> demographic information
- estimated on German mobility panel (MOP)
- developed at KIT (Karlsruhe)
- part of the mobiTopp suite
- written in Java
- open source

*Activity chains = pure activity chains

- No information on location
- No information on intervening trips

- models activity chains*
- based on <u>basic</u> demographic information
- estimated on German mobility panel (MOP)
- developed at KIT (Karlsruhe)
- part of the mobiTopp suite
- written in Java
- open source

*Activity chains = pure activity chains

- No information on intervening trips

ActiTopp: Person specification

- Id
- Age
- Gender
- Locality type
- Children aged 0-10 in the hh
- Children aged <18 in the hh
- Occupation type
- Number of cars in the hh
- Commuting distance

ActiTopp: Person specification

- Id
- Age
- Gender
- Locality type
- Children aged 0-10 in the hh
- Children aged <18 in the hh
- Occupation type
- Number of cars in the hh
- Commuting distance

Synthetic population

OD matrix

Thank you!

Description of methods

- Ziemke, D., Nagel, K. & Bhat, C.; Integrating CEMDAP and MATSim to increase the transferability of transport demand models; Transportation Research Record, 2015, 2493, 117-125.
- Ziemke, D. and K. Nagel. Development of a fully synthetic and open scenario for agent-based transport simulations – The MATSim Open Berlin Scenario. VSP Working Paper 17-12, TU Berlin, Transport Systems Planning and Transport Telematics, 2017. URL: http://www.vsp.tu-berlin.de/publications.
- Ziemke, D., Kaddoura, I. & Nagel, K. **The MATSim Open Berlin Scenario**: A multimodal agent-based transport simulation scenario based on synthetic demand modeling and Open Data, ABMTrans 2019

Find the Open Berlin Scenario

https://github.com/matsim-vsp/matsim-berlin

BACKUP (BERLIN)

MATSim simulation

Traffic Simulation

Agents travel on the network

Plan Scoring

 Agents score their executed activities and trips

Replanning

- Agents modify their plans along various possible choice dimensions
- Agents select a plan based on a multinomial logit model

- Output: Full activity-travel patterns of a day = "daily plan"
- Activity participation
 - = f (properties of person/household, model specification (behavior), transport/land-use environment)
- Activity participation → Transport demand (derived demand)

- Output: Full activity-travel patterns of a day = "daily plan"
- Activity participation
 - = f (properties of person/household, model specification (behavior), transport/land-use environment)
- Activity participation → Transport demand (derived demand)

- Output: Full activity-travel patterns of a day = "daily plan"
- Activity participation
 - = f (properties of person/household, model specification (behavior), transport/land-use environment)
- Activity participation → Transport demand (derived demand)
- Transferable?

- Output: Full activity-travel patterns of a day = "daily plan"
- Activity participation
 - = f (properties of person/household, model specification (behavior), transport/land-use environment)
- Activity participation → Transport demand (derived demand)
- Transferable?
- One thought further: Universal model?

Model Transferability

- Cambridge Systematics et al., 2012
 - "transferability improves with a better variable specification and with a disaggregate level model"
 - "some level of model updating should be undertaken using local data collected in the application context"
- Arentze et al., 2002
 - good performance for a regionally transferred model in regard to activity participation and time-of-day distributions, but weaker results for mode choice (model parameters updated)
- Sikder and Pinjari, 2013
 - update on ASC
 - better results when transferred with updating
- Open Berlin Scenario (This study)
 - Other models: Updating on specific model parameters
 - Here: Updating on initial full daily activity plans

Generalization of calibration approach

- Berlin Scenario
 - with calibration based on traffic counts
- Ruhr Scenario
 - with calibration based on
 - traffic counts
 - numbers of trips by distance class and mode

Open Berlin Scenario Literature

Description of methods

- Ziemke, D., Nagel, K. & Bhat, C.; Integrating CEMDAP and MATSim to increase the transferability of transport demand models; Transportation Research Record, 2015, 2493, 117-125.
- Ziemke, D. and K. Nagel. Development of a fully synthetic and open scenario for agent-based transport simulations – The MATSim Open Berlin Scenario. VSP Working Paper 17-12, TU Berlin, Transport Systems Planning and Transport Telematics, 2017. URL: http://www.vsp.tu-berlin.de/publications.
- Ziemke, D., Kaddoura, I. & Nagel, K. The MATSim Open Berlin Scenario: A multimodal agent-based transport simulation scenario based on synthetic demand modeling and Open Data, ABMTrans 2019

Find the Open Berlin Scenario

https://github.com/matsim-vsp/matsim-berlin

BACKUP (SNF)

Next steps

- Run a full 1% Switzerland scenario
- Speed/timing tests: dest choice is <u>slow</u>.
- Write regression and integration tests
- Calibration / validation of MATSim outputs

MunicipalityCommutesParser

- Reads in SwissCom matrices
- Creates "MATSim counts"
 - 1 count = 1 mun-mun relation
 - Each count has 24 hourly trip obs.
- Spatial scope of included counts
 - Adjustable by canton level
- Includes conversion of municipalities
 - needed because:
 - SwissCom matrix is based on the 2012 Swiss municipality layout (2.5k municipalities)
 - IVT population is based on some 2018 Swiss municipality layout (2.2k municipalities)
- Output
 - MATSim counts of number of trips by mun-mun relation with 24 hourly values based on 2018 Swiss mun layout

```
20161001_neuenburg_2018_1pct.xml
      <?xml version="1.0" encoding="UTF-8"?>
      <counts xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"</pre>
      xsi:noNamespaceSchemaLocation="http://matsim.org/files/dtd/counts v1.xsd"
       name="commuteCounts" year="20161001" >
          <count loc id="6404 6404" cs id="Boudry Boudry">
             <volume h="1" val="2.0" />
             <volume h="2" val="1.0" />
             <volume h="3" val="1.0" />
             <volume h="10" val="18.0" />
18
             <volume h="11" val="20.0"
19
             <volume h="12" val="23.0"
20
             <volume h="13" val="21.0"
21
22
23
24
25
             <volume h="18" val="21.0" />
26
             <volume h="19" val="17.0" />
27
             <volume h="20" val="13.0" />
             <volume h="21" val="9.0" />
             <volume h="22" val="6.0" />
29
             <volume h="23" val="4.0" />
30
31
             <volume h="24" val="2.0" />
33
L: 54 C: 36
```

Technisch

Berlin

IvtPopulationParser

- Reads in IVT Population (based on STATPOP)
- Re-computes and categorizes attributes as needed by actiTopp
- Output: Population, households, and facilities

```
population_1pct.xml
~/Workspace/shared-svn/projects/snf-big-data/data/scenario/neuenburg_1pct/population_1pct.xml -
                                                                                   (no function selected) , / , | , # , |
         <?xml version="1.0" encoding="utf-8"?>
         <!DOCTYPE population SYSTEM "http://www.matsim.org/files/dtd/population v6.dtd">
   2
   3
         <population>
   4
   5
   9
             <person id="4865627">
  10 🔻
                 <attributes>
  11 ▼
  12
                     <attribute name="age" class="java.lang.Integer" >45</attribute>
                     <attribute name="canton_id" class="java.lang.Integer" >24</attribute>
  13
                     <attribute name="children_0_10" class="java.lang.Boolean" >false</attribute>
  14
                     <attribute name="children_0_18" class="java.lang.Boolean" >true</attribute>
  15
                     <attribute name="employed" class="java.lang.Boolean" >true</attribute>
  16
  17
                     <attribute name="facility id" class="java.lang.String" >2156844</attribute>
                     <attribute name="gender" class="java.lang.String" >male</attribute>
  18
                     <attribute name="household_id" class="java.lang.String" >2156844</attribute>
  19
                     <attribute name="municipality_id" class="java.lang.Integer" >6416</attribute>
  20
                     <attribute name="municipality type" class="java.lang.String" >suburban</attribute>
  21
                     <attribute name="number of cars" class="java.lang.Integer" >0</attribute>
  22
  23 -
                 </attributes>
  24 -
             </person>
  25
  26
  27
             <person id="4865628">
  28 🔻
    L: 1 C: 1
                XML Unicode (UTF-8) Unix (LF) Saved: 28.08.19, 15:58:33 1750 885 / 146 013 / 31 673 100%
```

RunActitoppForlvtPopulation

- Prepare counts
 - All counts from 6 to 10 o'clock are regarded "morning peak"
 - Set up *commute trips lists* for each origin containing corresponding number of destinations (based on these morning peak observations)
- For each person from (MATSim) population
 - Create ActiTopp ("alter ego") person
 - Transfer basic demographic attributes from MATSim person and households
 - For employed people (full time, half time, vocational program, ...)
 - Select destination from commute trips lists
 - Determine distance by shortest path
 - Run actiTopp
 - Attributes: children <=10, children <18, age, employment, gender, areaType, # cars, commuting distance to work or education
 - Result: Activity chain -> convert into MATSim plan
- Output: Population with daily plans for each agent


```
<person id="4865627">
    <attributes>¿
        <attribute name="actitopp area type" class="java.lang.Integer" >3</attribute>¿
        <attribute name="actitopp_employment_class" class="java.lang.Integer" >2</attribute>¿
        <attribute name="actitopp_gender" class="java.lang.Integer" >1</attribute>¿
        <attribute name="age" class="java.lang.Integer" >45</attribute>¿
        <attribute name="canton_id" class="java.lang.Integer" >24</attribute>¿
        <attribute name="children_0_10" class="java.lang.Boolean" >false</attribute>¿
        <attribute name="children_0_18" class="java.lang.Boolean" >true</attribute>¿
        <attribute name="employed" class="java.lang.Boolean" >true</attribute>¿
        <attribute name="facility_id" class="java.lang.String" >2156844</attribute>¿
        <attribute name="gender" class="java.lang.String" >male</attribute>¿
        <attribute name="household_id" class="java.lang.String" >2156844</attribute>¿
        <attribute name="municipality_id" class="java.lang.Integer" >2</attribute>¿
        <attribute name="municipality_type" class="java.lang.String" >suburban</attribute>¿
        <attribute name="number_of_cars" class="java.lang.Integer" >0</attribute>¿
        <attribute name="work_edu_municipality_id" class="java.lang.Integer" >6458</attribute>¿
    </attributes>¿
    <plan selected="yes">
        <activity type="home" x="2557157.0" y="1203106.0" end_time="06:37:00" >
        </activity>
        <leq mode="car">
        </leg>
        <activity type="work" x="2561300.0" y="1204700.0" end_time="13:26:00" >
        </activity>
        <led mode="car">
        </lea>
        <activity type="leisure" x="2557157.0" y="1203106.0" end_time="14:17:00" >
        </activity>
        <leq mode="car">
        </lea>
        <activity type="home" x="2557157.0" y="1203106.0" end time="16:05:00" >
        </activity>
        <leg mode="car">
        </leg>
        <activity type="other" x="2557157.0" y="1203106.0" end_time="16:37:00" >
        </activity>
        <leq mode="car">
        </leg>
        <activity type="home" x="2557157.0" y="1203106.0" end_time="30:04:00" >
        </activity>
        <leg mode="car">
        </lea>
        <activity type="work" x="2561300.0" y="1204700.0" end_time="12:20:00" >
        </activity>
        <leq mode="car">
        <activity type="home" x="2557157.0" y="1203106.0" end_time="15:10:00" >
        </activity>
        <leg mode="car">
        </leq>
    </plan>
</person>
```

Destination choice: options

We need to perform destination choice to assign locations for the secondary ActiTopp tours (we already have home and work locations)

We are exploring three approaches:

- Location assignment (Hörl)
- Location choice (Horni)
- CaDyTS-based

Destination choice (A. Horni)

- An existing, published Location Choice contrib in the MATSim repository
- "Frozen Epsilons" -- Optimizes
 the otherwise intractable choice set
 by assigning consistent epsilons
 to each person and to each facility choice.

(b) Spatially correlated error terms.

Destination Choice – initial tests

- Neuenburg chosen as small test area
- Run Actitopp -> less than one minute ©
- Run Destination Choice -> about 3 minutes


```
public class ActitoppExample {
    private static ModelFileBase fileBase = new ModelFileBase();
   private static RNGHelper randomgenerator = new RNGHelper(1234);
   public static void main(String[] args) {
        ActitoppPerson testperson = new ActitoppPerson(
                99,
                       // PersIndex
                0.
                       // Kinder 0-10
                       // Kinder unter 18
                55.
                       // Alter
                       // Beruf
                1,
                       // Geschlecht
               1,
                2,
                       // Raumtyp
                2
                       // Pkw im HH
                );
        System.out.println(testperson);
       try {
            testperson.generateSchedule(fileBase, randomgenerator);
        } catch (InvalidPatternException e) {
           e.printStackTrace();
//
       testperson.getWeekPattern().printOutofHomeActivitiesList();
        testperson.getWeekPattern().printAllActivitiesList();
        HWeekPattern pattern = testperson.getWeekPattern();
        List<HActivity> activities = pattern.getAllActivities();
        for (HActivity activity: activities) {
           if (activity.getDay().getWeekday() == 1) {
               System.out.println("Start time = " + activity.getStartTime());
               System.out.println("End time = " + activity.getEndTime());
               System.out.println("Type = " + activity.getType());
       }
}
```


ActiTopp: Activity chains

```
0 Akt : Start 0 Ende 435 Dauer: 435 Typ: H (7)
1 Weg : Start 435 Ende 454 Dauer 19
1 Akt : Start 454 Ende 724 Dauer: 270 Typ: W (1)
1 Weg (letzter in Tour) : Start 724 Ende 743 Dauer 19
2 Akt : Start 743 Ende 785 Dauer: 42 Typ: H (7)
3 Weg : Start 785 Ende 804 Dauer 19
3 Akt : Start 804 Ende 1044 Dauer: 240 Typ: W (1)
3 Weg (letzter in Tour) : Start 1044 Ende 1063 Dauer 19
4 Akt : Start 1063 Ende 2160 Dauer: 1097 Typ: H (7)
5 Weg : Start 2160 Ende 2179 Dauer 19
5 Akt : Start 2179 Ende 2679 Dauer: 500 Typ: W (1)
5 Weg (letzter in Tour) : Start 2679 Ende 2698 Dauer 19
6 Akt : Start 2698 Ende 3580 Dauer: 882 Typ: H (7)
7 Weg : Start 3580 Ende 3599 Dauer 19
7 Akt : Start 3599 Ende 4134 Dauer: 535 Typ: W (1)
7 Weg (letzter in Tour): Start 4134 Ende 4153 Dauer 19
8 Akt : Start 4153 Ende 4703 Dauer: 550 Typ: H (7)
9 Weg : Start 4703 Ende 4722 Dauer 19
9 Akt : Start 4722 Ende 5279 Dauer: 557 Typ: W (1)
9 Weg (letzter in Tour) : Start 5279 Ende 5298 Dauer 19
10 Akt : Start 5298 Ende 6220 Dauer: 922 Typ: H (7)
11 Weg : Start 6220 Ende 6239 Dauer 19
11 Akt : Start 6239 Ende 6796 Dauer: 557 Typ: W (1)
11 Weg (letzter in Tour) : Start 6796 Ende 6815 Dauer 19
12 Akt : Start 6815 Ende 7550 Dauer: 735 Typ: H (7)
13 Weg : Start 7550 Ende 7569 Dauer 19
13 Akt : Start 7569 Ende 8230 Dauer: 661 Typ: W (2)
13 Weg (letzter in Tour) : Start 8230 Ende 8249 Dauer 19
14 Akt : Start 8249 Ende 8325 Dauer: 76 Typ: H (7)
15 Weg : Start 8325 Ende 8345 Dauer 20
15 Akt : Start 8345 Ende 8374 Dauer: 29 Typ: S (41)
15 Weg (letzter in Tour): Start 8374 Ende 8394 Dauer 20
16 Akt : Start 8394 Ende 9420 Dauer: 1026 Typ: H (7)
17 Weg : Start 9420 Ende 9440 Dauer 20
17 Akt : Start 9440 Ende 9610 Dauer: 170 Typ: L (51)
17 Weg (letzter in Tour) : Start 9610 Ende 9630 Dauer 20
18 Akt : Start 9630 Ende 10080 Dauer: 450 Typ: H (7)
```


ActiTopp: Activity chains

```
0 Akt : Start 0 Ende 435 Dauer: 435 Typ: H (7)
1 Weg : Start 435 Ende 454 Dauer 19
1 Akt : Start 454 Ende 724 Dauer: 270 Typ: W (1)
1 Weg (letzter in Tour) : Start 724 Ende 743 Dauer 19
2 Akt : Start 743 Ende 785 Dauer: 42 Typ: H (7)
3 Weg : Start 785 Ende 804 Dauer 19
3 Akt : Start 804 Ende 1044 Dauer: 240 Typ: W (1)
3 Weg (letzter in Tour) : Start 1044 Ende 1063 Dauer 19
4 Akt : Start 1063 Ende 2160 Dauer: 1097 Typ: H (7)
5 Weg : Start 2160 Ende 2179 Dauer 19
5 Akt : Start 2179 Ende 2679 Dauer: 500 Typ: W (1)
5 Weg (letzter in Tour) : Start 2679 Ende 2698 Dauer 19
6 Akt : Start 2698 Ende 3580 Dauer: 882 Typ: H (7)
7 Weg : Start 3580 Ende 3599 Dauer 19
7 Akt : Start 3599 Ende 4134 Dauer: 535 Typ: W (1)
7 Weg (letzter in Tour) : Start 4134 Ende 4153 Dauer 19
8 Akt : Start 4153 Ende 4703 Dauer: 550 Typ: H (7)
9 Weg : Start 4703 Ende 4722 Dauer 19
9 Akt : Start 4722 Ende 5279 Dauer: 557 Typ: W (1)
9 Weg (letzter in Tour) : Start 5279 Ende 5298 Dauer 19
10 Akt : Start 5298 Ende 6220 Dauer: 922 Typ: H (7)
11 Weg : Start 6220 Ende 6239 Dauer 19
11 Akt : Start 6239 Ende 6796 Dauer: 557 Typ: W (1)
11 Weg (letzter in Tour) : Start 6796 Ende 6815 Dauer 19
12 Akt : Start 6815 Ende 7550 Dauer: 735 Typ: H (7)
13 Weg : Start 7550 Ende 7569 Dauer 19
13 Akt : Start 7569 Ende 8230 Dauer: 661 Typ: W (2)
13 Weg (letzter in Tour) : Start 8230 Ende 8249 Dauer 19
14 Akt : Start 8249 Ende 8325 Dauer: 76 Typ: H (7)
15 Weg : Start 8325 Ende 8345 Dauer 20
15 Akt : Start 8345 Ende 8374 Dauer: 29 Typ: S (41)
15 Weg (letzter in Tour) : Start 8374 Ende 8394 Dauer 20
16 Akt : Start 8394 Ende 9420 Dauer: 1026 Typ: H (7)
17 Weg : Start 9420 Ende 9440 Dauer 20
17 Akt : Start 9440 Ende 9610 Dauer: 170 Typ: L (51)
17 Weg (letzter in Tour) : Start 9610 Ende 9630 Dauer 20
18 Akt : Start 9630 Ende 10080 Dauer: 450 Typ: H (7)
```


ActiTopp: Unknown properties

- Unknown properties
 - Number of cars
 - Occupations type
- Multiple draws and selection of plans
 - 2 or 3 draws per variable
 - Create multiple initial plans
 - Selection of plans supported by CaDyTS
 - (Calibration of dynamic transport simulations)
 - Validate if marginal distributions fit

