Axhausen, K.W. (2019) Agent-based modelling for transport planning, presentation at the LVMT Seminar "MODÉLISER LES TRANSPORTS D'AUJOURD'HUI ET DE DEMAIN : APPROCHE MULTI-AGENTS ET APPLICATIONS EN FRANCE ET À L'INTERNATIONAL" ITLS, ENPC, Paris, September 2019.

Agent-based modelling for transport planning

KW Axhausen

IVT ETH Zürich

September 2019

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

In lieu of acknowledgements: "Local" contributors

Prof. Kay Axhausen Dr. Milos Balac Dr. Michael Balmer Henrick Becker Dr. Joschka Bischoff Dr. David Charypar **Billy Charlton** Dr. Nurhan Cetin Dr. Artem Chakirov Yu Chen Dr. Francesco Ciari Dr. Christoph Dobler Dr. Alexander Frath Dr. Matthias Feil Dr. Gunnar Flötteröd Dr. Pieter Fourie Dr. Christian Gloor Dr. Dominik Grether Dr. Jeremy K. Hackney Dr. Andreas Horni

Sebastian Hörl Anugrah Ilahi Ihab Kaddoura Grace Kagho Nicolas Lefebvre Clarissa Livingston Dr. Johannes llenberger Dr. Gregor Lämmel Dr. Michal Maciejewski Patrick Manser Dr. Konrad Meister Dr. Ming Lu Joe Molloy Manuel Moyo Dr. Krill Müller Prof. Kai Nagel Dr. Andreas Neumann Dr. Thomas Nicolai Dr. Benjamin Kickhöfer

Dr. Sergio Ordonez Stefano Penazzi Dr. Bryan Raney Dr. Marcel Rieser Dr. Nadine Schüssler Dr. Lijun Sun Dr. David Strippgen Christopher Tchervenkov Therasa Thunig Dr Michael van Eggermond Dr. Rashid Waraich Dominik 7iemke Dr. Michael Zilske

Basic assumptions for transport planning

Social generalised costs is the sum of

individual generalised costs, i.e. decison relevant generalised costs & overlooked individual costs

And the

externalities caused

Accessibility ~ Opportunities, Speeds

Traffic is a system of moving, self-organising

Queues

The crucial short-term interaction between capacity, i.e. the

number of slots

for the desired speed and the

current demand

Societies chose their

number of slots

By the

design/operation of the road/rail/bike network

For the

Travel demand (pkm or tkm) is a

normal good

i.e. it grows with

decreasing individual "generalised costs"

Decision relevant generalised costs are the

sum of the risk and comfort weighted monetary expenditure and the time spent

The travellers chose their

average decision relevant generalised costs

with their package of

locations (residence, work) and **mobility tools**

A person's travel demand is the

result of its out-of-home activity participation

constrained by the currently

available time and money resources and their chosen average generalised costs

A person's travel experience is the result of the

queues (joined or avoided)

And can be addressed by

mostly costly changes

Resolution	Agents, flows
Scheduling model Choice model	Trip, tour, daily chain (with breaks) DCM, rules&heuristics
Route choice	Integrated, external (with consistent valuations?)
Choice set construction	Explicit, implicit
Solution method	Whole population (& MSA or similar) Sample enumeration (& MSA or similar), co-evolutionary search
- · · · · · · · · · ·	

Schedule equilibrium Yes, no

Resolution	Agents, flows
Scheduling model Choice model	Trip, tour , daily chain (with breaks) DCM, rules&heuristics
Route choice	Integrated, external without consistent valuations
Choice set construction	Explicit, implicit
Solution method	Whole population (& MSA or similar) Sample enumeration (& MSA or similar), co-evolutionary search

Schedule equilibrium (Yes), no

Resolution	Agents, flows
Scheduling model Choice model	Trip, tour, daily chain (with breaks) DCM , rules&heuristics
Route choice	Integrated, external without consistent valuations
Choice set construction	Explicit, implicit
Solution method	Whole population (& MSA or similar) Sample enumeration (& MSA or similar), co-evolutionary search
Schedule equilibrium	Yes, none reported it yet

Resolution

Agents, flows

Scheduling model Choice model Trip, tour, **daily chain** without breaks **DCM** and/or **rules**&heuristics

Route choice external Integrated with consistent valuations,

Choice set construction Explicit, implicit

Solution method Whole population (& MSA or similar) Sample enumeration (& MSA or similar), **co-evolutionary search**

Schedule equilibrium Yes, no

	System	Person
Long term	<i>slots</i> Regulation	Home and work locations Mobility tool ownership Social networks
Medium term	Services Prices Awareness	Season tickets
Short term	Operations	Scheduling

For all goods i of the market:

$$k'_{i,togz} = f(q'_{i,togz} (k'_{i,toqz}, B_{ogz}), A_{i,togz})$$

- k' : Estimated generalised costs [SFr/good]
- q': Estimated demand [Elements/Unit time]
- A : Supply of the goods
- B : Population (natural and legal)
- t : Time t
- o : Place o
- g : Group g
- z : Year z

Key points of the critique of equilibrium approaches

- Travel is derived demand, with some exceptions
- The travellers are constrained by their commitments and mobility tool ownership
- Travellers aren't in equilibrium
- Travellers don't know all alternatives
- Travellers don't plan their whole day (week) in advance

MATSim – A GNU open source project

MATSim: A GNU public licence software project

Main partners:

- TU Berlin (Prof. Nagel)
- ETH Zürich & FCL Singapore
- Senozon, Zürich (Dr. Balmer)
- Simunto, Zürich (Dr. Rieser)

Contributors, users, e.g.:

- TU Poznan
- University of Pretoria
- SBB, Bern
- Systems Group, DINF, ETH Zürich

2018 status

Known implementations:	About 45
Research groups:	About 35 (including some beyond transport)
Uses:	Research Some initial commercial uses Some policy consulting
Software:	Last reimplementation in 2012/13 Stable API Daily tests JAVA

Current progress: Singapore

MATSim: Logic of the co-evolution – Step 0

Agent 1 Plan 1.1	H-W-H; 8:00, 17:00; C,C;
Agent 2 Plan 2.1	H-W-H; 8:00, 17:00; C,C;
Agent 3 Plan 3.1	H-W-H; 8:00, 17:00; C,C;

Agent 1		
Plan 1.1	H-W-H; 8:00, 17:00; C,C;	35
Agent 2		
Plan 2.1	H-W-H; 8:00, 17:00; C,C;	35
Agent 3		
Plan 3.1	H-W-H; 8:00, 17:00; C,C;	35

Agent 1		
Plan 1.1	H-W-H; 8:00, 17:00; C,C;	35
Agent 2		
Plan 2.1	H-W-H; 8:00, 17:00; C,C;	35
Agent 3		
Plan 3.1	H-W-H; 8:00, 17:00; C,C;	35
Plan 3.2	H-W-H; 8:15, 17:30; C,C	

Co-evolution – Step 1.3 – After plan selection (best/MNL)

Agent 1		
Plan 1.1	H-W-H; 8:00, 17:00; C,C;	100%
Agent 2		
Plan 2.1	H-W-H; 8:00, 17:00; C,C;	100%
Agent 3		
Plan 3.1	H-W-H; 8:00, 17:00; C,C;	35
Plan 3.2	H-W-H; 8:15, 17:30; C,C;	New

Agent 1		
Plan 1.1	H-W-H; 8:00, 17:00; C,C;	45
Agent 2		
Ayem Z		
Plan 2.1	H-W-H; 8:00, 17:00; C,C;	45
Agent 3		
Plan 3.1	H-W-H; 8:00, 17:00; C,C;	35
Plan 3.2	H-W-H; 8:15, 17:30; C,C;	60

Agent 1		
Plan 1.1	H-W-H; 8:00, 17:00; C,C;	45
Plan 1.2	H-W-H; 8:00, 17:00; B,B;	
Agent 2		
Plan 2.1	H-W-H; 8:00, 17:00; C,C;	45
Agent 3		
Plan 3.1	H-W-H; 8:00, 17:00; C,C;	35
Plan 3.2	H-W-H; 8:15, 17:30; C,C;	60

Co-evolution – Step 2.3 – After plan selection (best/MNL)

Agent 1

Plan 1.1	H-W-H; 8:00, 17:00; C,C;	45
Plan 1.2	H-W-H; 8:00, 17:00; B,B;	New

Agent 2

Plan 2.1 H-W-H; 8:00, 17:00; C,C; 100%

Agent 3

Plan 3.1	H-W-H; 8:00, 17:00; C,C;	38%
Plan 3.2	H-W-H; 8:15, 17:30; C,C;	62%

Agent 1		
Plan 1.1	H-W-H; 8:00, 17:00; C,C;	45
Plan 1.2	H-W-H; 8:00, 17:00; B,B;	70
Agent 2		
Plan 2.1	H-W-H; 8:00, 17:00; C,C;	45
Agent 3		
Plan 3.1	H-W-H; 8:00, 17:00; C,C;	45
Plan 3.2	H-W-H; 8:15, 17:30; C,C;	60

Agent 1		
Plan 1.1	H-W-H; 8:00, 17:00; C,C;	45
Plan 1.2	H-W-H; 8:00, 17:00; B,B;	70
Agent 2		
Plan 2.1	H-W-H; 8:00, 17:00; C,C;	45
Agent 3		
Plan 3.1	H-W-H; 8:00, 17:00; C,C;	45
Plan 3.2	H-W-H; 8:15, 17:30; C,C;	60
Plan 3.3	H-W-H; 7:30, 17:15; B,B	

Co-evolution – Step 3.3 – After plan selection (best/MNL)

Agent 1

Plan 1.1	H-W-H; 8:00, 17:00; C,C;	36%
Plan 1.2	H-W-H; 8:00, 17:00; B,B;	64%

Agent 2

Plan 2.1 H-W-H; 8:00, 17:00; C,C; 100%

Agent 3

Plan 3.1	H-W-H; 8:00, 17:00; C,C;		-45
Plan 3.2	H-W-H; 8:15, 17:30; C,C;		60
Plan 3.3	H-W-H; 7:30, 17:15; B,B	New	

(The (worst) plan, more then memory allows, is deleted)

Co-evolution – Summary of best scores

	Iteration 1	Iteration 2	Iteration 3
Agent 1	35	45	80
Agent 2	35	45	45
Agent 3	35	60	60
Mean	35	50	62

SUE search example

LVMT 19

- Size of search space ~ Behavioural alternatives
- Rate of replanning (~ MSA)
- Size of the choice set ~ RAM
- Similarity of the daily schedules
- Integration into a log-sum term

Activity schedule dimensions

Number and type of activities Sequence of activities

- Start and duration of activity
- Composition of the group undertaking the activity
- Expenditure division
- Location of the activity
 - Movement between sequential locations
 - Location of access and egress from the mean of transport
 - Parking type
 - Vehicle/means of transport
 - Route/service
 - Group travelling together
 - Expenditure division

Current Vickrey-type utility function

$$U_{plan} = \sum_{i=1}^{n} U_{act,i} + \sum_{i=2}^{n} U_{trav,i-1,i}$$

$$U_{act,i} = U_{dur,i} + U_{late.ar,i}$$

Future whole day utility function?

Time elements	linear
 Travel time 	By mode and type of service;
	by crowding level
	by comfort level (parking search, stop&go)
 Transfer penalty 	
 Late penalty 	by activity type
Activity time	log (Vickrey) or S-shape (Joh) (all, individual)
Minimum duration	by activity type
 Preferred duration 	by activity type
Duration	by time of day (might go away if
particip	ation is included)
Destination	Attractiveness, Value for money (on-line, off-line)
Expenditure	by activity
LVMT 19	by mode/type of service

Schedule detail possibilities (in current stable MATSim)

Number and type of activities Sequence of activities (Balac) (Ordonez)

- Start and duration of activity
- Composition of the group undertaking the activity (Dubernet, Fourie)
- Expenditure division

LVMT 19

Location of the activity

(Hörl, Vitins)

- Movement between sequential locations
 - Location of access and egress from the mean of transport
 - Parking search and type
 - Vehicle/means of transport
 - Route/service
 - Group travelling together

• Expenditure division

(Waraich) (Bösch, Hörl)

(Dubernet, Fourie) 50

Finding short cuts

Turning Big Data into Smart Data

Dwell time model

Boarding and alighting process

Results of statistical model

Critical occupancy at 63% of total capacity.

Low floor allows short dwell processes.

Double decker alighting time per pax 0.285 seconds longer.

With higher occupancy and number of boarding and alighting passenger -> shorter activity time

LVMTLION, Alejandro Tirachini, Kay W. Axhausen, Alexander Erath and Der-Horng Lee (2014). 'Models of Bus Boarding and Alighting Dynamics', *Transportation Research Part A: Policy and Practice* 69: 447–460.

Heteroscedasticity of dwell times

LVMTLION, Alejandro Tirachini, Kay W. Axhausen, Alexander Erath and Der-Horng Lee (2014). 'Models of Bus Boarding and Alighting Dynamics', *Transportation Research Part A: Policy and Practice* 69: 447–460.

Accounting for travel time variability

Derive from Smart Card Data records travel times between stops

Each observed travel time between two subsequent stops contitutes one observation

Independent variables to be either derived from smart card data or GIS data, but do not require any other data source (e.g. traffic flow)

Static variables

- Availability of bus lane
- Number of intersections
- Number of left/right turns
- Curviness
- Deviation from crowfly distance
- Number of traffic lights

LVMT•19 Intersection density

Time-dependent variables

 Boarding/alighting activites in 500m radius

Validation

Access, egress times removed from matsim bus times

Evaluation of new services and routes:

- How can new network designs improve reliability and tackle overcrowding?
- How many passengers will be attracted by a new service?

Simulation and analysis:

- A full day simulated in just about 40 minutes.
- Leverage on off-the-shelf business analytic software for interactive analysis.

The reliability of a long bus line

The effect of splitting the line

Challenges

Challenges for MATSim

- Econometric estimation of the whole day scoring function
- Increase the size and variance of the implicit choice set
- Link to a log-sum formulation (Chakirov)
- Accelerating the iterative equilibrium search
- Gridlock modeling (& stability of equilibrium)
- Modelling "irrational/uninformed" behaviours
- Generation of artificial social networks in the agentpopulation
- Co-generation of joint activities

• Multiple agent-type equilibria, e.g. stores, PUDOs, agents

www.matsim.org

www.ivt.ethz.ch www.futurecities.ethz.ch

www.senozon.com www.simunto.com

^{edited by} Andreas Horni, Kai Nagel, Kay W. Axhausen

Appendix

Conclusions for modelling

We have to account for

self-selection everywhere

And we have to account for

spatial-temporal correlations and joint choices producing the queues

We have to better understand the

system capacities (e.g. mMFD)

And the willingness to

costly change (individual/joint) behaviour and

joint decision-making (group; collectives)