Reinventing Cities: From Urban Highway to Living Space

Paul Lecroart shows the many benefits of transforming urban highways into people-friendly boulevards

In 1976 Portland replaced its Harbor Drive with a waterfront park; in 1991 the Embarcadero Freeway in San Francisco was dismantled; in 2001 New York rebuilt the 12th Avenue where an elevated highway had stood; in 2005 the Cheonggyechon Expressway in Seoul made way for the river hidden underneath; and between 2013 and 2017 Paris pedestrianised the Seine. These limited-access grade-separated roads create physical barriers, tend to discourage centres, neighbourhoods and waterfronts, and hinder regeneration. These context-specific goals are usually part of wider urban intensification policies, eco-friendly transport plans and economic strategies. However, many highway removal projects were accidental: both the Embarcadero and Central Freeway viaducts in San Francisco were closed after being damaged by the Loma Prieta earthquake in 1989, and New York’s West Side elevated highway collapsed when a maintenance truck went through the viaduct in 1973!

To find answers to these questions and others, I have looked into over 20 highway-to-boulevard experiences either fully completed or planned in cities worldwide. Of these, nine cases were studied in depth on-site with reports published (in French): Seoul (Cheonggyechon Expressway), Portland (Harbor Drive), San Francisco (Embarcadero, Octavia), New York (West Side, Sheridan), Milwaukee (Park East), Montreal (Bonaventure), and Vancouver (Northern False Creek Viaducts).

Most of these cases involve fairly central stretches of highways supporting heavy traffic volumes (in the range of 30,000 to 150,000+ vehicles per day), before being replaced by a boulevard and/or a linear park. This research is reference material to inform highway transformation strategies and projects in the Paris Region.

WHY DO CITIES GET RID OF URBAN HIGHWAYS?
Depending on the physical context and circumstances, city authorities decide to remove highway stretches for quite a pragmatic combination of reasons, including:

- Aging infrastructure and rebuilding costs. In San Francisco, Seoul, New York (West Side), or Toronto (East Gardiner), it appeared cheaper to dismantle crumbling elevated highways than to rebuild or bury them. Recycling viaducts into pedestrian connections can also give a new life to obsolete infrastructure cheaply, as in Seoul (Seoullo 7017) and Paris (La Défense Boulevard).

- Revitalising blighted areas and unlocking redevelopment opportunities. This is a main driver for change in Vancouver, Milwaukee, Montreal, Birmingham (Inner Ring Road), Lyons (A43 Mermoz), and Oakland (I-980).

- Reclaiming the waterfront. Transport engineers enjoyed building highways along river or seafronts, but these created barriers and therefore suppressed real estate values. Reconnect cities with their historic setting and ‘giving the waterfront back to the people’, residents and visitors alike, often means converting the highways, such as in Portland, Seoul, New York and Paris.

- Reducing through traffic and related nuisances. This is central to the strategy supporting the Seoul, Paris, Lyons (A6/7 Confluence), and Brussels (A35) reconstructions.

These context-specific goals are usually part of wider urban intensification policies, eco-friendly transport plans and economic strategies. However, many highway removal projects were accidental: both the Embarcadero and Central Freeway viaducts in San Francisco were closed after being damaged by the Loma Prieta earthquake in 1989, and New York’s West Side elevated highway collapsed when a maintenance truck went through the viaduct in 1973!

DOES HIGHWAY TRANSFORMATION REALLY HELP REGENERATE CITIES?
Evidence from research shows that redesigning highway corridors can be a powerful driver for regenerating blighted or abandoned parts of cities, with a lasting positive impact on the city as a whole. Removing visual barriers, reconnecting streets, and improving the quality of the environment has changed the face of Portland, San Francisco, Seoul, Milwaukee and Birmingham. Replacing interchanges and ramps by straightforward crossroads unlocks vast pieces of land that can be reconverted into denser mixed use districts and parks.

WHERE DO THE CARS GO?
To many traffic engineers’ surprise, closing highways does not usually create traffic chaos beyond initial adjustments. Where spare road capacity did exist in some of the cases studied (Seoul, San Francisco, New York), car traffic migrated to local street networks. Traffic thus gets distributed more evenly on a larger number of streets. Congestion remained limited and less than forecast.

Average daily traffic in the road corridor may decrease dramatically after removal – from 26 per cent in Portland to up to 82 per cent in Seoul. When accounting for trips diverted to alternative roads or to public transport, a significant share of earlier traffic appears to have simply evaporated, typically in the range of 10-25 per cent in the cases studied. Faced with a reduction of road capacity and speed, a proportion of motorists change their routes, time of travel, trip frequency or activity programme, while others switch to alternative modes. Changing conditions makes car drivers think twice, leading some to change destination or give up less essential trips.

INCREASED CONNECTIVITY FOR EVERYONE
Some cities back up removal projects with specific alternative transport and travel management strategies. While reducing road supply on the Cheonggyechon corridor, Seoul increased metro and express bus services, and discouraged solo car use through infrastructure tolls and parking policy. Local accessibility often improves with the removal of detours. A decrease of vehicular trips may mean increased accessibility for people as a whole.

- Non-motorised use of space for enjoyment increase sharply. However, more people on streets with still heavy car traffic

1 Seoul: the Cheonggyechon River, formerly a highway carrying 168,000 cars a day, removal of the viaduct and restoration of the river significantly reduced traffic. Image by Paul Lecroart IAU

2 San Francisco Embarcadero Freeway in the 1960s, photo Tim Pharoah

3 The same area after the removal of the Freeway gave back the Bayfront to the people. Image by Paul Lecroart IAU
levels (80,000 vehicles a day on New York’s 12th Avenue today) may result in more car pedestrian or car-cyclist collisions: the careful design of multi-lane boulevards is critical to their overall success. Ultimately, what we may see is a shift from a system providing off-peak fast travel for some (the motorists) to a 24/7 system of slower accessibility for all.

ENVIRONMENTAL EFFECTS
A reduction in the volume of motorised traffic and distances travelled tends to reduce fuel consumption, as well as CO2 and fine particle emissions. Perceptions of noise levels decrease, even when actual levels remain high. Some highway-to-boulevard projects providing more greening may have a positive impact on the local climate; in summer, temperatures may be a degree or two lower than on other arterial roads.

A FAVOUREABLE COST-BENEFIT RATIO?
Transforming highways has a cost: in the cases studied, capital investment was in the range of €35-70 million (about £30-60 million) per kilometre. In view of the costs of maintaining or rebuilding infrastructure nearing the end of its life, transformation often proves cheaper. It may be a more affordable and longer-term solution than capping or tunnelling. Land freed for redevelopment can contribute to meet the costs.

COMPLEX PROCESSES, PUBLIC SUPPORT?
Redesigning a highway into a boulevard is always a lengthy, complex, and uncertain process in which open technical expertise, citizen participation, and political will play key roles. Convincing car-users and business interests requires lots of data, meetings and leadership. While controversial to begin with, these projects often win over the public during the process... or not, as in the case of Seattle (Alaskan Way). Just as in the 1970s, extensive highway plans were defeated by public opinion in San Francisco, London and other cities, many smart grass-roots coalitions are pressing governments today to remove existing highways and flyovers in cities including Paris, New York, Denver, Dallas and Sao Paolo.

SYMBOLIC ACTIONS OR PARADIGM SHIFTS?
Highway transformation projects have a strong symbolic impact because they affect objects traditionally connected with the idea of freedom and modernity. They bring us back to some of the fundamentals of city development, such as nature, heritage, parcels and streets, and into a more holistic way of thinking.

LEARNING FROM INTERNATIONAL EXPERIENCE
From an urban planner and designer’s perspective, the main lessons can be summarised in four points:

- Transforming urban highways into boulevards encourages people to change their travel patterns: less essential car trips tend to disappear and eco-friendly transport modes tend to increase. This can free-up road capacity for other needs, such as higher added value car trips or goods distribution. Improving local accessibility is not detrimental to longer-distance metropolitan or regional trips.

- An integrated boulevard offers a comprehensive metropolitan level of services connecting people and activities, moving as many people, if not more, than a highway, but at a slower, smoother speed. Boulevards enable social and cultural interactions to take place, ultimately the raison d’être of cities and a key to their economic performance.

- Replacing a highway with a well-connected high-quality multi-use boulevard creates value and can unlock the mixed use regeneration of deprived urban spaces and improve the liveability of the city as a whole.

- As a tool in the sustainable planner’s kit, highway conversion can be used pragmatically, for instance to leverage the revitalisation of a specific area. Successful tactical action on a short stretch where the highway is easy and cheap to change rapidly will help garner support for the transformation of longer stretches in the future. This is the strategy chosen by New York City for the Sheridan Expressway (by the Bronx River). In the United States, the country of the automobile par excellence, the success of removal projects stimulates many other cities to redesign obsolete highways. Seoul has removed 16 flyovers since 2005.

International successes in highway-to-boulevard transformation offer food for a wider rethinking of the functions, uses and status of urban highways in city regions. Profound changes are affecting the behavioural patterns of people and businesses, and the way that cities and regions are organised. Many developed cities worldwide, including Paris, New York, Los Angeles, Tokyo, London and Stockholm, have experienced an overall reduction in car use, traffic levels, and car ownership over the last decade.

Redesigning the existing urban highway network of large cities may be a smart way to address citizens’ aspirations and metropolitan development challenges, including global warming related issues. It is not just about design: it is about rethinking the planning, movement, lifestyles, and wealth creation of cities and regions. This is a major trans-disciplinary task for the coming decades.

Paul Lecroart, Senior Urban Planner, Institut d’Aménagement et d’Urbanisme de la Région Île-de-France (IAU), the Planning Agency for the Paris Metropolitan Region.

REFERENCES

Highway transformation projects have a strong symbolic impact because they affect objects traditionally connected with the idea of freedom and modernity.